Hostname: page-component-54dcc4c588-sdd8f Total loading time: 0 Render date: 2025-09-20T10:23:33.706Z Has data issue: false hasContentIssue false

Coupling superquadric Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) with immersed boundary method for particle-resolved direct numerical simulations of non-spherical particle suspension and fluidisation

Published online by Cambridge University Press:  18 September 2025

Bing Wang
Affiliation:
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, PR China Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
Jianjian Dai
Affiliation:
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, PR China Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
Jia Yu
Affiliation:
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, PR China Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
Xi Gao*
Affiliation:
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, PR China Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou 515063, PR China
*
Corresponding author: Xi Gao, xi.gao@gtiit.edu.cn

Abstract

A novel particle-resolved direct numerical simulations (PR-DNS) method for non-spherical particles is developed and validated in the open-source MFiX (Multi-phase Flow with Interphase eXchanges) code for simulating the suspension of non-spherical particles and fluidisation. The model is implemented by coupling superquadric Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) with the immersed boundary method. The model was first validated by applying it to analyse fluid dynamic coefficients ($C_{\!D} , C_{\!L} , C_{\!T}$) of superellipsoids and cylinders at different Reynolds numbers, and the PR-DNS results closely matched those of previous methods, demonstrating the reliability of the current PR-DNS approach. Then, the model was applied to the simulation of the fluidisation of spheres and cylinders. The PR-DNS results were compared with both particle-unresolved superquadric DEM-CFD simulation and experimental data. The pressure drop, height distribution and orientation distribution of particles were analysed. The results show that the PR-DNS method provides a reliable method for reproducing fluidisation experimental results of non-spherical particles. In addition, the comparison of the drag correction coefficients predicted by existing models with that obtained from PR-DNS results indicates the need for a new drag model for particle-unresolved simulation of non-spherical particles.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bokkers, G., van Sint Annaland, M. & Kuipers, J. 2004 Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study. Powder Technol. 140, 176186.10.1016/j.powtec.2004.01.018CrossRefGoogle Scholar
Brömmer, M., Scharnowski, M., Illana Mahiques, E., Wirtz, S. & Scherer, V. 2024 Investigating the inflow into a granular bed using a locally resolved method. Particuology 85, 89101.10.1016/j.partic.2023.03.022CrossRefGoogle Scholar
Clift, R., Grace, J.R. & Weber, M.E. 2013 Bubbles, Drops, and Particles. Academic Press.Google Scholar
Dai, J., Ma, Z., Sheintuch, M. & Gao, X. 2024 SuperDEM-CFD modeling of fluidization of spherical and cylindrical particle binary mixtures and experiment validation. Ind. Engng Chem. Res. 63, 1596115974.10.1021/acs.iecr.4c02145CrossRefGoogle Scholar
Vanna, F.D., Picano, F. & Benini, E. 2020 A sharp-interface immersed boundary method for moving objects in compressible viscous flows. Comput. Fluids 201, 104415.10.1016/j.compfluid.2019.104415CrossRefGoogle Scholar
Duan, F., Yu, Y., Chen, X. & Zhou, Q. 2022 Particle–particle drag force in inertial bidisperse gas–particle suspensions. J. Fluid Mech. 952, A11.10.1017/jfm.2022.874CrossRefGoogle Scholar
Eghbalmanesh, A., Fathiganjehlou, A., Rieder, D.R., Hoogendoorn, M., Miloshevska, M., Baltussen, M.W., Peters, E.A.J.F., Buist, K.A. & Kuipers, J.A.M. 2024 CFD-validated pore network modeling of packed beds of non-spherical particle. Chem. Engng Sci. 283, 119396.10.1016/j.ces.2023.119396CrossRefGoogle Scholar
Fan, Z., Liu, D., Heynderickx, G.J., Deivendran, B., Guo, J. & Chen, X. 2025 Interface-resolved simulation of droplet–particle interaction dynamics in multi-particle collisions. Phys. Fluids 37, 043334.10.1063/5.0262828CrossRefGoogle Scholar
Feng, Z.-G. & Musong, S.G. 2014 Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed. Powder Technol. 262, 6270.10.1016/j.powtec.2014.04.019CrossRefGoogle Scholar
Gao, X., Yu, J., Li, C., Panday, R., Xu, Y., Li, T., Ashfaq, H., Hughes, B. & Rogers, W.A. 2020 Comprehensive experimental investigation on biomass-glass beads binary fluidization: a data set for CFD model validation. AIChE J. 66, e16843.10.1002/aic.16843CrossRefGoogle Scholar
Gao, X., Yu, J., Lu, L., Li, C. & Rogers, W.A. 2021 a Development and validation of SuperDEM-CFD coupled model for simulating non-spherical particles hydrodynamics in fluidized beds. Chem. Engng J. 420, 127654.10.1016/j.cej.2020.127654CrossRefGoogle Scholar
Gao, X., Yu, J., Lu, L. & Rogers, W.A. 2021 b Coupling particle scale model and SuperDEM-CFD for multiscale simulation of biomass pyrolysis in a packed bed pyrolyzer. AIChE J. 67, e17139.CrossRefGoogle Scholar
Ge, Z. & Elfring, G.J. 2025 Hydrodynamic diffusion in apolar active suspensions of squirmers. J. Fluid Mech. 1003, A17.10.1017/jfm.2024.1071CrossRefGoogle Scholar
Giahi, M. & Bergstrom, D. 2024 Fully resolved simulation of spherical and non-spherical particles in a turbulent channel flow. Phys. Fluids 36, 043324.10.1063/5.0195317CrossRefGoogle Scholar
Goossens, W.R. 2019 Review of the empirical correlations for the drag coefficient of rigid spheres. Powder Technol. 352, 350359.10.1016/j.powtec.2019.04.075CrossRefGoogle Scholar
Guo, Y., Wu, C.Y. & Thornton, C. 2013 Modeling gas-particle two-phase flows with complex and moving boundaries using DEM-CFD with an immersed boundary method. AIChE J. 59, 10751087.10.1002/aic.13900CrossRefGoogle Scholar
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Springer Science & Business Media.Google Scholar
Hölzer, A. & Sommerfeld, M. 2008 New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184, 361365.10.1016/j.powtec.2007.08.021CrossRefGoogle Scholar
Hori, N., Rosti, M.E. & Takagi, S. 2022 An Eulerian-based immersed boundary method for particle suspensions with implicit lubrication model. Comput. Fluids 236, 105278.10.1016/j.compfluid.2021.105278CrossRefGoogle Scholar
Jain, R., Tschisgale, S. & Fröhlich, J. 2019 A collision model for DNS with ellipsoidal particles in viscous fluid. Intl J. Multiphase Flow 120, 103087.CrossRefGoogle Scholar
Jain, R., Tschisgale, S. & Fröhlich, J. 2021 Impact of shape: DNS of sediment transport with non-spherical particles. J. Fluid Mech. 916, A38.10.1017/jfm.2021.214CrossRefGoogle Scholar
Jiang, X., Xu, C. & Zhao, L. 2024 Settling and collision of spheroidal particles with an offset mass centre in a quiescent fluid. J. Fluid Mech.. 984, A40.10.1017/jfm.2024.248CrossRefGoogle Scholar
Kempe, T. & Fröhlich, J. 2012 Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. J. Fluid Mech. 709, 445489.10.1017/jfm.2012.343CrossRefGoogle Scholar
Lan, B., Xu, J., Lu, S., Liu, Y. & Xu, F., et al. 2024 Direct reduction of iron-ore with hydrogen in fluidized beds: a coarse-grained CFD-DEM-IBM study. Powder Technol. 438, 119624.10.1016/j.powtec.2024.119624CrossRefGoogle Scholar
Lan, B., Zhao, P., Xu, J., Zhao, B., Zhai, M. & Wang, J. 2022 CFD-DEM-IBM simulation of particle drying processes in gas-fluidized beds. Chem. Engng Sci. 255, 117653.10.1016/j.ces.2022.117653CrossRefGoogle Scholar
Liu, X., Ai, Q., Wang, L., Liu, M., Shuai, Y. & Pan, Q. 2024 Optimization of non-spherical particle flow in vertical waste heat recovery devices: analyzing structural configurations. Powder Technol. 448, 120273.10.1016/j.powtec.2024.120273CrossRefGoogle Scholar
Lote, D.A., Yang, X. & Mao, X. 2024 Numerical simulation and modelling of the drag, lift, and pitching torque acting on cylindrical disc particles. Powder Technol. 440, 119749.10.1016/j.powtec.2024.119749CrossRefGoogle Scholar
Luo, K., Tan, J., Wang, Z. & Fan, J. 2016 Particle-resolved direct numerical simulation of gas–solid dynamics in experimental fluidized beds. AIChE J. 62, 19171932.10.1002/aic.15186CrossRefGoogle Scholar
Ma, H., Zhou, L., Liu, Z., Chen, M., Xia, X. & Zhao, Y. 2022 A review of recent development for the CFD-DEM investigations of non-spherical particles. Powder Technol. 412, 117972.10.1016/j.powtec.2022.117972CrossRefGoogle Scholar
Mahajan, V.V., Padding, J.T., Nijssen, T.M.J., Buist, K.A. & Kuipers, J.A.M. 2018 Nonspherical particles in a pseudo-2D fluidized bed: experimental study. AIChE J. 64, 15731590.10.1002/aic.16078CrossRefGoogle Scholar
Mema, I. & Padding, J.T. 2021 Fluidization of elongated particles—effect of multi-particle correlations for drag, lift, and torque in CFD-DEM. AIChE J. 67, e17157.10.1002/aic.17157CrossRefGoogle ScholarPubMed
Mema, I., Wagner, E.C., van Ommen, J.R. & Padding, J.T. 2020 Fluidization of spherical versus elongated particles-experimental investigation using X-ray tomography. Chem. Engng J. 397, 125203.10.1016/j.cej.2020.125203CrossRefGoogle Scholar
Mola, I.A., Fawell, P.D. & Small, M. 2020 Particle-resolved direct numerical simulation of drag force on permeable, non-spherical aggregates. Chem. Engng Sci. 218, 115582.10.1016/j.ces.2020.115582CrossRefGoogle Scholar
Ouchene, R., Khalij, M., Arcen, B. & Tanière, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 3343.10.1016/j.powtec.2016.07.067CrossRefGoogle Scholar
Ouchene, R., Khalij, M., Tanière, A. & Arcen, B. 2015 Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers. Comput. Fluids 113, 5364.10.1016/j.compfluid.2014.12.005CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.10.1017/S0962492902000077CrossRefGoogle Scholar
Qi, X., Chen, C., Fei, C., Zhou, J., Liu, K., Wu, Y., Zhao, C. & Yang, W. 2025 A non-crystallization-driven strategy for the preparation of non-spherical polymeric nanoparticles. J. Colloid Interface Sci. 688, 582590.10.1016/j.jcis.2025.02.138CrossRefGoogle ScholarPubMed
Reddy, R., Sathe, M., Joshi, J., Nandakumar, K. & Evans, G. 2013 Recent developments in experimental (PIV) and numerical (DNS) investigation of solid–liquid fluidized beds. Chem. Engng Sci. 92, 112.10.1016/j.ces.2012.11.017CrossRefGoogle Scholar
Ruan, X., Gorman, M.T., Li, S. & Ni, R. 2022 Surface-resolved dynamic simulation of charged non-spherical particles. J. Comput. Phys. 466, 111381.10.1016/j.jcp.2022.111381CrossRefGoogle Scholar
Sanjeevi, S.K., Dietiker, J.F. & Padding, J.T. 2022 Accurate hydrodynamic force and torque correlations for prolate spheroids from Stokes regime to high Reynolds numbers. Chem. Engng J. 444, 136325.10.1016/j.cej.2022.136325CrossRefGoogle Scholar
Sanjeevi, S.K., Kuipers, J. & Padding, J.T. 2018 Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. Intl J. Multiphase Flow 106, 325337.10.1016/j.ijmultiphaseflow.2018.05.011CrossRefGoogle Scholar
Sanjeevi, S.K. & Padding, J.T. 2017 On the orientational dependence of drag experienced by spheroids. J. Fluid Mech. 820, R1.10.1017/jfm.2017.239CrossRefGoogle Scholar
Sanjeevi, S.K. & Padding, J.T. 2020 Hydrodynamic forces on monodisperse assemblies of axisymmetric elongated particles: orientation and voidage effects. AIChE J. 66, e16951.10.1002/aic.16951CrossRefGoogle ScholarPubMed
Schwarzmeier, C., Rettinger, C., Kemmler, S., Plewinski, J., Núñez-González, F., Köstler, H., Rüde, U. & Vowinckel, B. 2023 Particle-resolved simulation of antidunes in free-surface flows. J. Fluid Mech. 961, R1.10.1017/jfm.2023.262CrossRefGoogle Scholar
Shao, Y., Zhong, W. & Yu, A. 2016 Mixing behavior of binary and multi-component mixtures of particles in waste fluidized beds. Powder Technol. 304, 7380.10.1016/j.powtec.2016.06.054CrossRefGoogle Scholar
Shardt, O. & Derksen, J. 2012 Direct simulations of dense suspensions of non-spherical particles. Intl J. Multiphase Flow 47, 2536.10.1016/j.ijmultiphaseflow.2012.06.007CrossRefGoogle Scholar
Su, J., Ma, K., Yan, Z., He, Q. & Xu, X. 2023 Dynamics of flexible fibers in confined shear flows at finite Reynolds numbers. Phys. Fluids 35, 043308.Google Scholar
Tang, Y., Lau, Y., Deen, N., Peters, E. & Kuipers, J. 2016 Direct numerical simulations and experiments of a pseudo-2D gas-fluidized bed. Chem. Engng Sci. 143, 166180.10.1016/j.ces.2015.12.026CrossRefGoogle Scholar
Tavassoli, H., Peters, E. & Kuipers, J. 2015 Direct numerical simulation of fluid–particle heat transfer in fixed random arrays of non-spherical particles. Chem. Engng Sci. 129, 4248.10.1016/j.ces.2015.02.024CrossRefGoogle Scholar
Tsuji, T., Higashida, K., Okuyama, Y. & Tanaka, T. 2014 Fictitious particle method: a numerical model for flows including dense solids with large size difference. AIChE J. 60, 16061620.10.1002/aic.14355CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.10.1016/j.jcp.2005.03.017CrossRefGoogle Scholar
Vollmari, K., Jasevičius, R. & Kruggel-Emden, H. 2016 Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technol. 291, 506521.10.1016/j.powtec.2015.11.045CrossRefGoogle Scholar
Wang, B., Dai, J., Li, S., Lin, Y., Patrascu, M. & Gao, X. 2024 a Coupling coarse-grained DEM-CFD and intraparticle model for biomass fast pyrolysis simulation and experiment validation. AIChE J. 70, e18393.10.1002/aic.18393CrossRefGoogle Scholar
Wang, B., Ma, Z., Li, S., Dai, J., Patrascu, M. & Gao, X. 2024 b Experiment investigation and multiscale modeling of biomass oxidative fast pyrolysis in a fluidized bed reactor. Chem. Engng J. 501, 157546.10.1016/j.cej.2024.157546CrossRefGoogle Scholar
Wang, J., Ma, L., Jiang, M., Fang, Q., Yin, C., Tan, P., Zhang, C. & Chen, G. 2024 c Direct numerical simulation of the drag, lift, and torque coefficients of high aspect ratio biomass cylindrical particles. Phys. Fluids 36, 013315.10.1063/5.0186621CrossRefGoogle Scholar
Wang, S. & Shen, Y. 2022 Super-quadric CFD-DEM simulation of chip-like particles flow in a fluidized bed. Chem. Engng Sci. 251, 117431.CrossRefGoogle Scholar
Wang, Y., Yang, Y., Yang, H. & Pang, Z. 2024d Numerical simulation of fluid-particle interaction in geomechanics using an extended CFD-DEM approach with a super-quadric model of non-spherical particles. Intl J. Numer. Anal. Meth. Geomech. 48, 78103.Google Scholar
Williams, J.R. & Pentland, A.P. 1992 Superquadrics and modal dynamics for discrete elements in interactive design. Engng Comput. 9, 115127.Google Scholar
Xiao, W., Zhang, H., Luo, K., Mao, C. & Fan, J. 2022 Immersed boundary method for multiphase transport phenomena. Rev. Chem. Engng 38, 363405.10.1515/revce-2019-0076CrossRefGoogle Scholar
Zhao, J., Zhao, S. & Luding, S. 2023 The role of particle shape in computational modelling of granular matter. Nat. Rev. Phys. 5, 505525.10.1038/s42254-023-00617-9CrossRefGoogle Scholar
Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. 2016 DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108152.CrossRefGoogle Scholar