Hostname: page-component-76c49bb84f-ndtt8 Total loading time: 0 Render date: 2025-07-05T06:21:48.783Z Has data issue: false hasContentIssue false

Cross-wind-induced spanwise flapping of tandem turbulent diffusion flames: experimental- and large eddy simulation-based study

Published online by Cambridge University Press:  30 June 2025

Yuhang Chen
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Kazui Fukumoto
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Yanli Miao
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Jingru Zheng
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Fei Tang*
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Longhua Hu*
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
*
Corresponding authors: Longhua Hu, hlh@ustc.edu.cn; Fei Tang, ftang@ustc.edu.cn
Corresponding authors: Longhua Hu, hlh@ustc.edu.cn; Fei Tang, ftang@ustc.edu.cn

Abstract

This research investigates the spanwise oscillation patterns of turbulent non-premixed flames in a tandem configuration, using both experimental methods and large eddy simulations under cross-airflow conditions. Based on the heat release rate (17.43–34.86 kW) and the burner size (0.15 $\times$ 0.15 m), the flame behaves like both a buoyancy-controlled fire (such as a pool fire) and, due to cross-wind effects, a forced flow-controlled fire. The underlying fire dynamics was modelled by varying the spacing between the square diffusion burners, cross-wind velocity and heat release rate. Two flapping modes, the oscillating and bifurcating modes, were observed in the wake of the downstream diffusion flame. This behaviour depends on the wake of the upstream diffusion flame. As the backflow of the upstream flame moved downstream, the maximum flame width of the downstream flame became broader. The flapping amplitude decreased with a stronger cross-wind. Furthermore, the computational fluid dynamics simulation was performed by FireFOAM based on OpenFOAM v2006 2020 to investigate the flapping mechanism. The simulation captured both modes well. Disagreement of the flapping period on the left and right sides results in the oscillating mode, while an agreement of the flapping period results in the bifurcating mode. Finally, the scaling law expressed the dimensionless maximum flame width with the proposed set of basic dimensional parameters, following observations and interpretation by simulations. The results help prevent the potential hazards of this type of basic fire scenario and are fundamentally significant for studying wind-induced multiple fires.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Both authors contributed equally as co-first authors.

References

Baldwin, R. 1968 Flame merging in multiple fires. Combust. Flame 12 (4), 318324.10.1016/0010-2180(68)90036-9CrossRefGoogle Scholar
Cetegen, B.M. & Ahmed, T.A. 1993 Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93 (1-2), 157184.10.1016/0010-2180(93)90090-PCrossRefGoogle Scholar
Chen, Y.H., Fang, J., Zhang, X.L., Miao, Y., Lin, Y., Tu, R. & Hu, L.H. 2023a Pool fire dynamics: principles, models and recent advances. Prog. Energy Combust. Sci. 95 (101070), 154.10.1016/j.pecs.2022.101070CrossRefGoogle Scholar
Chen, Y.H., Fukumoto, K., Zhang, X., Lin, Y., Tang, F. & Hu, L.H. 2023b Study of elevated- and ground pool fire flame horizontal lengths in cross airflows: air entrainment change due to Coanda effect. Proc. Combust. Inst. 39 (3), 40634073.10.1016/j.proci.2022.09.038CrossRefGoogle Scholar
Chen, Y.H., Hu, L.H., Kuang, C., Zhang, X.L., Lin, Y.J. & Zhong, X.P. 2021 Flame interaction and tilting behaviour of two tandem adjacent hydrocarbon turbulent diffusion flames in crosswind: an experimental quantification and characterisation. Fuel 290 (119930), 110.10.1016/j.fuel.2020.119930CrossRefGoogle Scholar
Chen, Z., Wen, J.X., Xu, B. & Dembele, S. 2014 Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Intl J. Heat Mass Transfer 70, 389408.10.1016/j.ijheatmasstransfer.2013.11.010CrossRefGoogle Scholar
Emori, R.I. & Saito, K. 1983 A study of scaling laws in pool and crib fires. Combust. Sci. Technol. 31 (5-6), 217231.10.1080/00102208308923643CrossRefGoogle Scholar
Ertesvåg, I.S. & Magnussen, B.F. 2000 The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159 (1), 213235.10.1080/00102200008935784CrossRefGoogle Scholar
Finney, M.A. & McAllister, S.S. 2011 A review of fire interactions and mass fires. J. Combust. 2011 (1), 114.Google Scholar
Fric, T.F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.10.1017/S0022112094003800CrossRefGoogle Scholar
Fukumoto, K., Wang, C.J. & Wen, J.X. 2018 Large eddy simulation of upward flame spread on PMMA walls with a fully coupled fluid-solid approach. Combust. Flame 190, 365387.10.1016/j.combustflame.2017.11.012CrossRefGoogle Scholar
Fukumoto, K., Wang, C.J. & Wen, J.X. 2019 Large eddy simulation of a syngas jet flame: effect of preferential diffusion and detailed reaction mechanism. Energy Fuels 33 (6), 55615581.10.1021/acs.energyfuels.9b00130CrossRefGoogle Scholar
Fukumoto, K., Wen, J.X., Li, M., Ding, Y. & Wang, C. 2020 Numerical simulation of small pool fires incorporating liquid fuel motion. Combust. Flame 213, 441454.10.1016/j.combustflame.2019.11.047CrossRefGoogle Scholar
Fukumoto, K., Wang, C.J. & Wen, J.X. 2022 Study on the role of soot and heat fluxes in upward flame spread using a wall-resolved large eddy simulation approach. J. Therm. Anal. Calorim. 147 (7), 46454665.10.1007/s10973-021-10791-6CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3 (3), 17601765.10.1063/1.857955CrossRefGoogle Scholar
Giacomazzi, E., Picchia, F.R. & Arcidiacono, N. 2008 A review of chemical diffusion: criticism and limits of simplified methods for diffusion coefficient calculation. Combust. Theor. Model. 12 (1), 135158.10.1080/13647830701550370CrossRefGoogle Scholar
Hamins, A., Konishi, K., Borthwick, P. & Kashiwagi, T. 1996 Global properties of gaseous pool fires. Symp. (Intl) Combust. 26 (1), 14291436.10.1016/S0082-0784(96)80363-8CrossRefGoogle Scholar
Harris, S.J. & McDonald, N.R. 2022 Fingering instability in wildfire fronts. J. Fluid Mech. 943, 126.10.1017/jfm.2022.452CrossRefGoogle Scholar
Hartl, K.A. & Smits, A.J. 2016 Scaling of a small scale burner fire whirl. Combust. Flame 163, 202208.CrossRefGoogle Scholar
Heskestad, G. 2016 Fire plumes, flame height, and air entrainment. In SFPE Handbook of Fire Protection Engineering, 5th edn, chap. 13. Springer.Google Scholar
Hu, L.H., Zhang, X.L., Delichatsios, M.A., Wu, L. & Kuang, C. 2017 Pool fire flame base drag behaviour with cross flow in a sub-atmospheric pressure. Proc. Combust. Inst. 36 (2), 31053112.10.1016/j.proci.2016.06.139CrossRefGoogle Scholar
Ji, J., Ge, F.L. & Qiu, T.T. 2021 Experimental and theoretical research on flame emissivity and radiative heat flux from heptane pool fires. Proc. Combust. Inst. 38 (3), 48774885.10.1016/j.proci.2020.05.052CrossRefGoogle Scholar
Kourta, A., Boisson, H.C., Chassaing, P. & Minh, H.H. 1987 Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 181, 141161.10.1017/S0022112087002039CrossRefGoogle Scholar
Kuwana, K., Sekimoto, K., Saito, K. & Williams, F.A. 2008 Scaling of a small scale burner fire whirl. Fire Safety J. 43 (4), 252257.10.1016/j.firesaf.2007.10.006CrossRefGoogle Scholar
Lee, Y., Delichatsios, M.A. & Silcock, G.W.H. 2007 Heat fluxes and flame heights in facades from fires in enclosures of varying geometry. Proc. Combust. Inst. 31 (2), 25212528.10.1016/j.proci.2006.08.033CrossRefGoogle Scholar
Lei, J., Huang, P.C., Liu, N.A. & Zhang, L.H. 2022 a On the flame width of turbulent fire whirls. Combust. Flame 244, 112285.10.1016/j.combustflame.2022.112285CrossRefGoogle Scholar
Lei, J., Deng, W.Y., Liu, Z.H., Mao, S.H., Saito, K., Tao, Y., Wu, H.M. & Xie, C.L. 2022 b Experimental study on burning rates of large-scale hydrocarbon pool fires under controlled wind conditions. Fire Safety J. 127, 103517.CrossRefGoogle Scholar
Li, B., Ding, L., Simeoni, A., Ji, J., Wan, H. & Yu, L. 2021 A numerical investigation of the flow characteristics around two tandem propane fires in a windy environment. Fuel 286, 119344.CrossRefGoogle Scholar
Lilly, D.K. 1992 A proposed modification of the Germano subgrid: scale closure method. Phys. Fluids 4 (3), 633633.10.1063/1.858280CrossRefGoogle Scholar
Liu, N., Lei, J., Gao, W., Chen, H. & Xie, X. 2021 Combustion dynamics of large-scale wildfires. Proc. Combust. Inst. 38 (1), 157198.10.1016/j.proci.2020.11.006CrossRefGoogle Scholar
Magnussen, B.F. & Hjertager, B.H. 1977 On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Intl) Combust 16 (1), 719729.10.1016/S0082-0784(77)80366-4CrossRefGoogle Scholar
Magnussen, B.F. 1981 On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. In Proceedings of the 19th Aerospace Sciences Meeting, AIAA Paper 81-0042.Google Scholar
Maragkos, G., Beji, T. & Merci, B. 2017 Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combust. Flame 181, 2238.10.1016/j.combustflame.2017.03.012CrossRefGoogle Scholar
Maragkos, G. & Merci, B. 2020 On the use of dynamic turbulence modelling in fire applications. Combust. Flame 216, 923.10.1016/j.combustflame.2020.02.012CrossRefGoogle Scholar
Maynard, T., Princevac, M. & Weise, D.R. 2016 A study of the flow field surrounding interacting line fires. J. Combust. 76, 112.Google Scholar
Maynard, T.B. & Butta, J.W. 2017 A physical model for flame height intermittency. Fire Technol. 54 (1), 135161.10.1007/s10694-017-0678-7CrossRefGoogle Scholar
McCaffrey, B.J. 1979 Purely buoyant diffusion flames: some experimental results, Tech. Rep. NBSIR 79-1910. Centre for fire research, National engineering laboratory, National bureau of standards.10.6028/NBS.IR.79-1910CrossRefGoogle Scholar
McCaffrey, B. 1995 Flame height. In SFPE Handbook of Fire Protection Engineering, 2nd edn, pp. 2-1–2-8. Society of Fire Protection Engineers and National Fire Protection Association.Google Scholar
Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3 (11), 27462757.10.1063/1.858164CrossRefGoogle Scholar
Morvan, D., Hoffman, C., Rego, F. & Mell, W. 2011 Numerical simulation of the interaction between two fire fronts in grassland and shrubland. Fire Safety J. 46 (8), 469479.CrossRefGoogle Scholar
OpenFOAM v2006 2020, Source codes and documentations. Available at: http://www.openfoam.com/.Google Scholar
Passalacqua, A. 2021 The source code of the dynamic Smagorinsky model for OpenFOAM. Available at https://github.com/AlbertoPa.Google Scholar
Poling, B.E., Prausnitz, J.M. & O’Connell, J.P. 2001 Thermal conductivity. In The Properties of Gases and Liquids. 5th edn, chP. 10.3. McGraw-Hill.Google Scholar
Quintier, J.G. 1989 Scaling applications in fire research. Fire Safety J. 15 (1), 329.CrossRefGoogle Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101 (19), 194502.10.1103/PhysRevLett.101.194502CrossRefGoogle ScholarPubMed
Shelley, M.J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43 (1), 449465.10.1146/annurev-fluid-121108-145456CrossRefGoogle Scholar
Shinohara, M. & Kudo, K. 2004 Experimental study of the flow structure including whirlwinds in the wake region of a flame in a cross-wind. In Proceedings of the 6th Asia-Oceania Symposium on Fire Science and Technology, pp. 120131. International Association for Fire Safety Science.Google Scholar
Shintani, Y., Nagaoka, T., Deguchi, Y., Ido, K. & Harada, K. 2014 Simple method to predict downward heat flux from flame to floor. Fire Sci. Technol. 33 (1), 1734.10.3210/fst.33.17CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Smooke, M.D. 1991 Reduced kinetics mechanisms and asymptotic approximations for methane-air flames. In Lecture Notes in Physics, chap. 1. Springer-Verlag.Google Scholar
Smith, T.F., Shen, Z.F. & Frledman, J.N. 1982 Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Mass Transfer 104 (4), 602608.Google Scholar
Sun, Y., Liu, N.A., Gao, W., Xie, X.D. & Zhang, L.H. 2021 Experimental study on the combustion characteristics of rectangular fire plumes. Fire Safety J. 126, 103477.10.1016/j.firesaf.2021.103477CrossRefGoogle Scholar
Tang, F., Deng, L., He, Q. & Zhang, J. 2023 Mass burning rate and merging behaviour of double liquid pool fires under cross winds. Proc. Combust. Inst. 39 (3), 40414052.10.1016/j.proci.2022.09.032CrossRefGoogle Scholar
Trelles, J. & Pagni, P.J. 1991 Fire-induced winds in the 20 October 1991 Oakland hills fire. Fire Safety Sci. 5, 911922.10.3801/IAFSS.FSS.5-911CrossRefGoogle Scholar
Uddin, E., Huang, W.X. & Sung, H.J. 2015 Actively flapping tandem flexible flags in a viscous flow. J. Fluid Mech. 780, 120142.10.1017/jfm.2015.460CrossRefGoogle Scholar
Vasanth, S., Tauseef, S.M., Abbasi, T. & Abbasi, S.A. 2014 Multiple pool fires: occurrence, simulation, modeling and management. J. Loss Prev. Process. Ind. 29, 103121.10.1016/j.jlp.2014.01.005CrossRefGoogle Scholar
Wang, C.J., Wen, J.X. & Chen, Z.B. 2014 a Simulation of large-scale LNG pool fires using firefoam. Combust. Sci. Technol. 186 (10-11), 16321649.10.1080/00102202.2014.935615CrossRefGoogle Scholar
Wang, C.J., Wen, J.X., Chen, Z.B. & Dembele, S. 2014b Predicting radiative characteristics of hydrogen and hydrogen/methane jet fires using firefoam. Intl J. Hydrogen Energy 39 (35), 2056020569.10.1016/j.ijhydene.2014.04.062CrossRefGoogle Scholar
White, J.P. 2015 Radiative emissions measurements from a buoyant, turbulent line flame under oxidizer-dilution quenching conditions. Fire Safety J. 76, 7484.10.1016/j.firesaf.2015.05.003CrossRefGoogle Scholar
Xia, X. & Zhang, P. 2018 A vortex-dynamical scaling theory for flickering buoyant diffusion flames. J. Fluid Mech. 855, 11561169.10.1017/jfm.2018.707CrossRefGoogle Scholar
Yang, W. & Blasiak, W. 2005 Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air. Energy 30 (2-4), 385398.10.1016/j.energy.2004.05.011CrossRefGoogle Scholar
Zhou, R. & Wu, Z.N. 2007 Fire whirls due to surrounding flame sources and the influence of the rotation speed on the flame height. J. Fluid Mech. 583, 313345.CrossRefGoogle Scholar
Zhu, L.D. 2009 Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech. 635, 455475.10.1017/S0022112009007903CrossRefGoogle Scholar
Zukoski, E.E., Cetegen, B.M. & Kubota, T. 1985 Visible structure of buoyant diffusion flames. Proc. Combust. Inst. 20 (1), 361366.10.1016/S0082-0784(85)80522-1CrossRefGoogle Scholar
Supplementary material: File

Chen et al. supplementary material movie 1

Experimental overhead video image at a crosswind velocity of 2 m/s, S/D=3, and heat release rates of both the upstream and downstream burners of 17.43 kW.
Download Chen et al. supplementary material movie 1(File)
File 7.6 MB
Supplementary material: File

Chen et al. supplementary material movie 2

Computational video of the flame volume and velocity vectors corresponding to a crosswind velocity of 2 m/s, S/D=3, and heat release rates of both the upstream and downstream burners of 17.43 kW.
Download Chen et al. supplementary material movie 2(File)
File 13.8 MB
Supplementary material: File

Chen et al. supplementary material movie 3

Computational video of flame volume corresponding to a crosswind velocity of 2 m/s, S/D=3, and heat release rates of both the upstream and downstream burners of 17.43 kW.
Download Chen et al. supplementary material movie 3(File)
File 2.2 MB