Skip to main content Accessibility help
×
Home

Cylinder wakes in shallow oscillatory flow: the coastal island wake problem

  • Paul M. Branson (a1), Marco Ghisalberti (a1), Gregory N. Ivey (a1) and Emil J. Hopfinger (a2)

Abstract

Topographic complexity on continental shelves is the catalyst that transforms the barotropic tide into the secondary and residual circulations that dominate vertical and cross-shelf mixing processes. Island wakes are one such example that are observed to significantly influence the transport and distribution of biological and physical scalars. Despite the importance of island wakes, to date, no sufficient, mechanistic description of the physical processes governing their development exists for the general case of unsteady tidal forcing. Controlled laboratory experiments are necessary for the understanding of this complex flow phenomenon. Here, three-dimensional velocity field measurements of cylinder wakes in shallow-water oscillatory flow are conducted across a parameter space that is typical of tidal flow around shallow islands. The wake form in steady flows is typically described in terms of the stability parameter $S=c_{f}D/h$ (where $D$ is the island diameter, $h$ is the water depth and $c_{f}$ is the bottom boundary friction coefficient); in tidal flows, there is an additional dependence on the Keulegan–Carpenter number $KC=U_{0}T/D$ (where $U_{0}$ is the tidal velocity amplitude and $T$ is the tidal period). In this study we demonstrate that when the influence of bottom friction is confined to a Stokes boundary layer the stability parameter is given by $S=\unicode[STIX]{x1D6FF}^{+}/KC$ where $\unicode[STIX]{x1D6FF}^{+}$ is the ratio of the wavelength of the Stokes bottom boundary layer to the depth. Three classes of wake form are observed with decreasing wake stability: (i) steady bubble for $S\gtrsim 0.1$ ; (ii) unsteady bubble for $0.06\lesssim S\lesssim 0.1$ ; and (iii) vortex shedding for $S\lesssim 0.06$ . Transitions in wake form and wake stability are shown to depend on the magnitude and temporal evolution of the wake return flow. Scaling laws are developed to allow upscaling of the laboratory results to island wakes. Vertical and lateral transport depend on three parameters: (i) the flow aspect ratio $h/D$ ; (ii) the amplitude of tidal motion relative to the island size, given by $KC$ ; and (iii) the relative influence of bottom friction to the flow depth, given by $\unicode[STIX]{x1D6FF}^{+}$ . A model of wake upwelling based on Ekman pumping from the bottom boundary layer demonstrates that upwelling in the near-wake region of an island scales with $U_{0}(h/D)KC^{1/6}$ and is independent of the wake form. Finally, we demonstrate an intrinsic link between the dynamical eddy scales, predicted by the Ekman pumping model, and the island wake form and stability.

Copyright

Corresponding author

Email address for correspondence: paul.branson@uwa.edu.au

References

Hide All
Akkermans, R. A. D., Cieslik, A. R., Kamp, L. P. J., Trieling, R. R., Clercx, H. J. H. & van Heijst, G. J. F. 2008 The three-dimensional structure of an electromagnetically generated dipolar vortex in a shallow fluid layer. Phys. Fluids 20, 116601.
Atkinson, C., Coudert, S., Foucaut, J., Stanislas, M. & Soria, J. 2010 The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp. Fluids 50 (4), 10311056.
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics (Cambridge Mathematical Library). Cambridge University Press.
Belden, J. 2013 Calibration of multi-camera systems with refractive interfaces. Exp. Fluids 54 (2), 118.
Belden, J., Truscott, T. T., Axiak, M. C. & Techet, A. H. 2010 Three-dimensional synthetic aperture particle image velocimetry. Meas. Sci. Technol. 21 (12), 125403.
Branson, P. M.2018 Laboratory study of circulation and upwelling in tidally-forced, shallow water island wakes. PhD thesis, Oceans Graduate School, University of Western Australia.
Branson, P. M., Ghisalberti, M. & Ivey, G. N. 2019 Three-dimensionality of shallow island wakes. Environ. Fluid Mech. doi:10.1007/s10652-019-09661-5.
Chen, D. & Jirka, G. H. 1995 Experimental study of plane turbulent wakes in a shallow water layer. Fluid Dyn. Res. 16 (1), 1141.
Chen, D. & Jirka, G. H. 1997 Absolute and convective instabilities of plane turbulent wakes in a shallow water layer. J. Fluid Mech. 338, 157172.
Chu, V. H., Wu, J. H. & Khayat, R. E. 1983 Stability of turbulent shear flows in shallow channel. In Proceeding of the 20th Congress of IAHR, Moscow, pp. 128133. International Association for Hydraulic Research.
Creswell, G. R. & Badcock, K. A. 2000 Tidal mixing near the kimberley coast of NW Australia. Mar. Freshwat. Res. 51, 641646.
Cushman-Roisin, B. & Beckers, J. 2011 Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, International Geophysics, vol. 101. Academic Press.
Delandmeter, P., Lambrechts, J., Marmorino, G. O., Legat, V., Wolanski, E., Remacle, J., Chen, W. & Deleersnijder, E. 2017 Submesoscale tidal eddies in the wake of coral islands and reefs: satellite data and numerical modelling. Ocean Dyn. 67 (7), 897913.
Duran-Matute, M., Kamp, L. P. J., Trieling, R. R. & van Heijst, G. J. F. 2012 Regimes of two-dimensionality of decaying shallow axisymmetric swirl flows with background rotation. J. Fluid Mech. 691, 214244.
Earl, T. A., Paetzold, J. & Cochard, S. 2013 Tomographic PIV measurements of turbulent fountains with refraction index matching. J. Flow Visualization Image Process. 20 (3), 179208.
Fischer, H. B. 1973 Longitudinal dispersion and turbulent mixing in open-channel flow. Annu. Rev. Fluid Mech. 5 (1), 5978.
Fischer, H. B., List, E., Koh, R., Imberger, J. & Brooks, N. 1979 Mixing in Inland and Coastal Waters. Academic Press.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Grubišić, V., Smith, R. B. & Schär, C. 1995 The effect of bottom friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci. 52 (11), 19852005.
Hoffman, M. D. & Gelman, A. 2014 The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Machine Learning Res. 15 (1), 15931623.
Ingram, R. G. & Chu, V. H. 1987 Flow around islands in Rupert Bay: an investigation of the bottom friction effect. J. Geophys. Res. 92 (C13), 1452114533.
Isaksen, A., McMillan, L. & Gortler, S. J. 2000 Dynamically reparameterized light fields. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 297306. ACM Press/Addison-Wesley Publishing Co.
Jenner, K. C. S., Jenner, M. N. & McCabe, K. A. 2001 Geographical and temporal movements of humpback whales in western Australian waters. APPEA J. 38 (1), 692707.
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.
Johnston, D. W. & Read, A. J. 2007 Flow-field observations of a tidally driven island wake used by marine mammals in the bay of fundy, Canada. Fish. Oceanogr. 16 (5), 422435.
Keane, R. D. & Adrian, R. J. 1992 Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49 (3), 191215.
Lloyd, P. M. & Stansby, P. K. 1997 Shallow-water flow around model conical islands of small side slope. II. Submerged. J. Hydraul. Engng 123 (12), 10681077.
Lloyd, P. M., Stansby, P. K. & Chen, D. 2001 Wake formation around islands in oscillatory laminar shallow-water flows. Part 1. Experimental investigation. J. Fluid Mech. 429, 217238.
Moffat, R. J. 1988 Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1 (1), 317.
Negretti, M. E., Vignoli, G., Tubino, M. & Brocchini, M. 2006 On shallow-water wakes: an analytical study. J. Fluid Mech. 567, 457475.
Pattiaratchi, C., James, A. & Collins, M. 1987 Island wakes and headland eddies: a comparison between remotely sensed data and laboratory experiments. J. Geophys. Res. 92 (C1), 783794.
Pingree, R. D. & Maddock, L. 1980 The effects of bottom friction and earth’s rotation on an island’s wake. J. Mar. Biol. Assoc. U.K. 60 (2), 499508.
Raffel, M., Willert, C. & Wereley, S. 2007 Particle Image Velocimetry: A Practical Guide. Springer.
Riegels, F. 1938 Zur kritik des Hele-Shaw–Versuchs. Z. Angew. Math. Mech. 18 (2), 95106.
Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. 2016 Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55.
Scarano, F. & Poelma, C. 2009 Three-dimensional vorticity patterns of cylinder wakes. Exp. Fluids 47 (1), 6983.
Signell, R. P. & Geyer, W. R. 1991 Transient eddy formation around headlands. J. Geophys. Res. 96 (C2), 25612575.
Soulsby, R. L. 1983 The bottom boundary layer of shelf seas. In Physical Oceanography of Coastal and Shelf Seas (ed. Johns, B.), Elsevier Oceanography Series, vol. 35, chap. 5, pp. 189266. Elsevier.
Sumer, B. M. & Fredsøe, J. 2006 Hydrodynamics Around Cylindrical Strucures, Advanced Series on Ocean Engineering, vol. 26. World Scientific Pub Co Inc.
Vaish, V., Garg, G., Talvala, E., Antunez, E., Wilburn, B., Horowitz, M. & Levoy, M. 2005 Synthetic aperture focusing using a shear-warp factorization of the viewing transform. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops, pp. 129129. IEEE.
Westerweel, J. 1997 Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8 (12), 13791392.
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6), 10961100.
White, L. & Wolanski, E. 2008 Flow separation and vertical motions in a tidal flow interacting with a shallow-water island. Estuar. Coast. Shelf Sci. 77 (3), 457466.
Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 155, 141174.
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.
Wolanski, E., Asaeda, T., Tanaka, A. & Deleersnijder, E. 1996 Three-dimensional island wakes in the field, laboratory experiments and numerical models. Cont. Shelf Res. 16 (11), 14371452.
Wolanski, E., Brinkman, R., Spagnol, S., McAllister, F., Steinberg, C., Skirving, W. & Deleersnijder, E. 2003 Merging scales in models of water circulation: perspectives from the great barrier reef. In Advances in Coastal Modeling (ed. Lakhan, V. C.), Elsevier Oceanography Series, vol. 67, chap. 15, pp. 411429. Elsevier.
Wolanski, E. & Hamner, W. M. 1988 Topographically controlled fronts in the ocean and their biological influence. Science 241 (4862), 177181.
Wolanski, E., Imberger, J. & Heron, M. L. 1984 Island wakes in shallow coastal waters. J. Geophys. Res. 89 (C6), 1055310569.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Branson et al. supplementary material
Branson et al. supplementary material 1

 Unknown (245 KB)
245 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed