Skip to main content Accessibility help
×
Home

Cylinders with square cross-section: wake instabilities with incidence angle variation

  • GREGORY J. SHEARD (a1), MATTHEW J. FITZGERALD (a2) and KRIS RYAN (a1)

Abstract

The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles.

Copyright

Corresponding author

Email address for correspondence: Greg.Sheard@eng.monash.edu.au

References

Hide All
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Blackburn, H. M. & Lopez, J. M. 2003 On three-dimensional quasi-periodic Floquet instabilities of two-dimensional bluff body wakes. Phys. Fluids 15 (8), L57L60.
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flow in cylindrical geometries. J. Comput. Phys. 197, 759778.
Carmo, B. S., Sherwin, S. J., Bearman, P. W. & Willden, R. H. J. 2008 Wake transition in the flow around two circular cylinders in staggered arrangements. J. Fluid Mech. 597, 129.
Dutta, S., Panigrahi, P. K. & Muralidhar, K. 2008 Experimental investigation of flow past a square cylinder at an angle of incidence. J. Engng Mech.-ASCE 134 (9), 788803.
Henderson, R. D. 1997 nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.
Henderson, R. D. & Barkley, D. 1996 Secondary instability in the wake of a circular cylinder. Phys. Fluids 8, 16831685.
Inoue, O. & Yamazaki, T. 1999 Secondary vortex streets in two-dimensional cylinder wakes. Fluid Dyn. Res. 25 (1), 118.
Karasudani, T. & Funakoshi, M. 1994 Evolution of a vortex street in the far wake of a circular cylinder. Fluid Dyn. Res. 14 (6), 331352.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.
Karniadakis, G. E. & Triantafyllou, G. S. 1992 Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238, 130.
Landau, L. D. & Lifshitz, E. M. 1976 Mechanics. Third Edition. Pergamon Press.
Lehoucq, R. B., Sorenson, D. C. & Yang, C. 1998 ARPACK Users' Guide. SIAM.
Leweke, T. & Provansal, M. 1994 Model for the transition in bluff body wakes. Phys. Rev. Lett. 72 (20), 31743177.
Leweke, T. & Provansal, M. 1995 The flow behind rings: bluff body wakes without end effects. J. Fluid Mech. 288, 265310.
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.
Luo, S. C., Chew, Y. T. & Ng, Y. T. 2003 Characteristics of square cylinder wake transition flows. Phys. Fluids 15 (9), 25492559.
Luo, S. C., Tong, X. H. & Khoo, B. C. 2007 Transition phenomena in the wake of a square cylinder. J. Fluids Struct. 23, 227248.
Mansy, H., Yang, P.-M. & Williams, D. R. 1994 Quantitative measurements of three-dimensional structures in the wake of a circular cylinder. J. Fluid Mech. 270, 277296.
Marques, F., Lopez, J. M. & Blackburn, H. M. 2004 Bifurcations in systems with Z 2 spatio-temporal and O(2) spatial symmetry. Physica D 189 (3/4), 247276.
Mittal, R. & Balachandar, S. 1996 Direct numerical simulation of flow past elliptic cylinders. J. Comput. Phys. 124, 351367.
Ranjan, R., Dalal, A. & Biswas, G. 2008 A numerical study of fluid flow and heat transfer around a square cylinder at incidence using unstructured grids. Numer. Heat Transfer A-Appl. 54 (9), 890913.
Robichaux, J., Balachandar, S. & Vanka, S. P. 1999 Three-dimensional Floquet instability of the wake of a square cylinder. Phys. Fluids 11 (3), 560578.
Ryan, K., Thompson, M. C. & Hourigan, K. 2005 Three-dimensional transition in the wake of bluff elongated cylinders. J. Fluid Mech. 538, 129.
Saha, A. K., Biswas, G. & Muralidhar, K. 2003 Three-dimensional study of flow past a square cylinder at low Reynolds numbers. Intl J. Heat Fluid Flow 24, 5466.
Sheard, G. J. 2009 Cylinders with elliptical cross-section: wake stability with variation in angle of incidence. In IUTAM Symposium on Unsteady Separated Flows and their Control (ed. Braza, M. & Hourigan, K.), Proceedings of the IUTAM Symposium “Unsteady Separated Flows and their Control”, Corfu, Greece, 18–22 June 2007, IUTAM Bookseries. Vol. 14, ISBN: 978-1-4020-9897-0.
Sheard, G. J., Leweke, T., Thompson, M. C. & Hourigan, K. 2007 Flow around an impulsively arrested circular cylinder. Phys. Fluids 19 (8), 083601.
Sheard, G. J. & Ryan, K. 2007 Pressure-driven flow past spheres moving in a circular tube. J. Fluid Mech. 592, 233262.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2003 From spheres to circular cylinders: the stability and flow structures of bluff ring wakes. J. Fluid Mech. 492, 147180.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004 From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 4578.
Sheard, G. J., Thompson, M. C., Hourigan, K. & Leweke, T. 2005 The evolution of a subharmonic mode in a vortex street. J. Fluid Mech. 534, 2338.
Shraiman, B. I., Pumir, A., van Saarloos, W., Hohenberg, P. C. & Chaté, H. 1992 Spatiotemporal chaos in the one-dimensional complex Ginzburg–Landau equation. Physica D 57 (3–4), 241248.
Sohankar, A., Norberg, C. & Davidson, L. 1999 Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers. Phys. Fluids 11 (2), 288306.
Taneda, S. 1959 Downstream development of wakes behind cylinders. J. Phys. Soc. Jpn 14 (6), 843848.
Thompson, M. C., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake of a circular cylinder. Exp. Therm. Fluid Sci. 12, 190196.
Thompson, M. C., Leweke, T. & Provansal, M. 2001 a Kinematics and dynamics of sphere wake transition. J. Fluids Struct. 15, 575585.
Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001 b The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15, 607616.
Tong, X. H., Luo, S. C. & Khoo, B. C. 2008 Transition phenomena in the wake of an inclined square cylinder. J. Fluids Struct. 24 (7), 9941005.
Williamson, C. H. K. 1988 a Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, 27422744.
Williamson, C. H. K. 1988 b The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31, 31653168.
Williamson, C. H. K. 1992 The natural and forced formation of spot-like ‘vortex dislocations’ in the transition of a wake. J. Fluid Mech. 243, 393441.
Williamson, C. H. K. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345407.
Williamson, C. H. K. & Prasad, A. 1993 Wave interactions in the far wake of a body. Phys. Fluids A-Fluid Dyn. 5 (7), 18541856.
Wu, J., Sheridan, J., Welsh, M. C. & Hourigan, K. 1996 Three-dimensional vortex structures in a cylinder wake. J. Fluid Mech. 312, 201222.
Zhang, H., Noack, B. R., König, M. & Eckelmann, H. 1995 On the transition of the circular cylinder wake. Phys. Fluids 7 (4), 779793.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Cylinders with square cross-section: wake instabilities with incidence angle variation

  • GREGORY J. SHEARD (a1), MATTHEW J. FITZGERALD (a2) and KRIS RYAN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.