Skip to main content
    • Aa
    • Aa

Deformation and orientation statistics of neutrally buoyant sub-Kolmogorov ellipsoidal droplets in turbulent Taylor–Couette flow

  • Vamsi Spandan (a1), Detlef Lohse (a1) (a2) and Roberto Verzicco (a1) (a3)

The influence of the underlying flow topology on the shape and size of sub-Kolmogorov droplets dispersed in a turbulent flow is of considerable interest in many industrial and scientific applications. In this work we study the deformation and orientation statistics of sub-Kolmogorov droplets dispersed into a turbulent Taylor–Couette flow. Along with direct numerical simulations (DNS) of the carrier phase and Lagrangian tracking of the dispersed droplets, we solve a phenomenological equation proposed by Maffettone and Minale (J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241) to track the shape evolution and orientation of approximately $10^{5}$ ellipsoidal droplets. By varying the capillary number $Ca$ and viscosity ratio $\hat{\unicode[STIX]{x1D707}}$ of the droplets we find that they deform more with increasing capillary number $Ca$ and this effect is more pronounced in the boundary layer regions. This indicates that along with an expected capillary number effect there is also a strong correlation between spatial position and degree of deformation of the droplet. Regardless of the capillary number $Ca$ , the major axis of the ellipsoids tends to align with the streamwise direction and the extensional strain rate eigendirection in the boundary layer region while the distribution is highly isotropic in the bulk due to the strong mixing provided by the large-scale vortical structures. When the viscosity ratio between the droplet and the carrier fluid is increased we find that there is no preferential stretched axis which is due to the increased influence of rotation over stretching and relaxation. Droplets in high viscosity ratio systems are thus less deformed and oblate (disk-like) as compared to highly deformed prolate (cigar-like) droplets in low viscosity ratio systems.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. D. Andereck , S. S. Liu  & H. L. Swinney 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.

M. U. Babler , L. Biferale , L. Brandt , U. Feudel , K. Guseva , A. S. Lanotte , C. Marchioli , F. Picano , G. Sardina  & A. Soldati 2015 Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows. J. Fluid Mech. 766, 104128.

L. Biferale , C. Meneveau  & R. Verzicco 2014 Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence. J. Fluid Mech. 754, 184207.

M. Byron , J. Einarsson , K. Gustavsson , G. Voth , B. Mehlig  & E. Variano 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27 (3), 035101.

C. E. Chaffey  & H. Brenner 1967 A second-order theory for shear deformation of drops. J. Colloid Interface Sci. 24 (2), 258269.

L. Chevillard  & C. Meneveau 2013 Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596.

R. G. Cox 1969 The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37 (03), 601623.

V. Cristini , J. Blawzdziewicz , M. Loewenberg  & L. R. Collins 2003 Breakup in stochastic Stokes flows: sub-Kolmogorov drops in isotropic turbulence. J. Fluid Mech. 492, 231250.

S. Dabiri , J. Lu  & G. Tryggvason 2013 Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids 25 (10), 102110.

J. K Eaton  & J. R. Fessler 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.

B. Eckhardt , S. Grossmann  & D. Lohse 2000 Scaling of global momentum transport in Taylor–Couette and pipe flow. Eur. Phys. J. B 18 (3), 541544.

B. Eckhardt , S. Grossmann  & D. Lohse 2007a Fluxes and energy dissipation in thermal convection and shear flows. Europhys. Lett. 78 (2), 24001.

B. Eckhardt , S. Grossmann  & D. Lohse 2007b Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.

S. Elghobashi 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.

N. A. Frankel  & A. Acrivos 1970 The constitutive equation for a dilute emulsion. J. Fluid Mech. 44 (01), 6578.

D. P. M. van Gils , D. Narezo Guzman , C. Sun  & D. Lohse 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.

S. S. Girimaji  & S. B. Pope 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.

S. Grossmann , D. Lohse  & C. Sun 2016 High Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.

S. Guido , M. Minale  & P. L. Maffettone 2000 Drop shape dynamics under shear-flow reversal. J. Rheol. 44 (6), 13851399.

S. Guido  & M. Villone 1998 Three-dimensional shape of a drop under simple shear flow. J. Rheol. 42 (2), 395415.

J. O. Hinze 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.

P. L. Johnson  & C. Meneveau 2015 Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence. Phys. Fluids 27 (8), 085110.

J. Lu , A. Fernández  & G. Tryggvason 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17 (9), 095102.

J. Lu  & G. Tryggvason 2008 Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20 (4), 040701.

T. S. Lund  & M. M. Rogers 1994 An improved measure of strain state probability in turbulent flows. Phys. Fluids 6 (5), 18381847.

P. L. Maffettone  & M. Minale 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78 (2), 227241.

J. Magnaudet  & I. Eames 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.

C. Marchioli , M. Fantoni  & A. Soldati 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22 (3), 033301.

M. R. Maxey  & J. J. Riley 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.

M. Minale 2008 A phenomenological model for wall effects on the deformation of an ellipsoidal drop in viscous flow. Rheol. Acta 47 (5–6), 667675.

M. Minale 2010 Models for the deformation of a single ellipsoidal drop: a review. Rheol. Acta 49 (8), 789806.

P. H. Mortensen , H. I. Andersson , J. J. J. Gillissen  & B. J. Boersma 2008 On the orientation of ellipsoidal particles in a turbulent shear flow. Intl J. Multiphase Flow 34 (7), 678683.

R. Ni , S. Kramel , N. T. Ouellette  & G. A. Voth 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluids Mech. 766, 202225.

D. O. Njobuenwu  & M. Fairweather 2015 Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow. Chem. Engng Sci. 123, 265282.

R. Ostilla-Mónico , S. G. Huisman , T. J. G. Jannink , D. P. M. Van Gils , R. Verzicco , S. Grossmann , C. Sun  & D. Lohse 2014a Optimal Taylor–Couette flow: radius ratio dependence. J. Fluid Mech. 747, 129.

R. Ostilla-Mónico , E. P. van der Poel , R. Verzicco , S. Grossmann  & D. Lohse 2014b Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26 (1), 015114.

R. Ostilla-Mónico , E. P. van der Poel , R. Verzicco , S. Grossmann  & D. Lohse 2014c Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.

R. Ostilla-Mónico , R. J. A. M. Stevens , S. Grossmann , R. Verzicco  & D. Lohse 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.

R. Ostilla-Mónico , R. Verzicco  & D. Lohse 2015 Effects of the computational domain size on direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27 (2), 025110.

S. Parsa , E. Calzavarini , F. Toschi  & G. A. Voth 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (13), 134501.

P. Perlekar , L. Biferale , M. Sbragaglia , S. Srivastava  & F. Toschi 2012 Droplet size distribution in homogeneous isotropic turbulence. Phys. Fluids. 24 (6), 065101.

E. P. van der Poel , R. Ostilla-Mónico , J. Donners  & R. Verzicco 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.

J. M. Rallison 1984 The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16 (1), 4566.

M. Shin  & D. L. Koch 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.

V. Spandan , R. Ostilla-Mónico , R. Verzicco  & D. Lohse 2016 Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach. J. Fluid Mech. 798, 411435.

H. A. Stone 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26 (1), 65102.

G. I. Taylor 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. 138, 4148.

G. I. Taylor 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. 146, 501523.

G. Tryggvason , S. Dabiri , B. Aboulhasanzadeh  & J. Lu 2013 Multiscale considerations in direct numerical simulations of multiphase flows. Phys. Fluids 25 (3), 031302.

M. D. de Tullio , J. Nam , G. Pascazio , E. Balaras  & R. Verzicco 2012 Computational prediction of mechanical hemolysis in aortic valved prostheses. Eur. J. Mech. (B/Fluids) 35, 4753.

A. Vananroye , P. Van Puyvelde  & P. Moldenaers 2011 Deformation and orientation of single droplets during shear flow: combined effects of confinement and compatibilization. Rheol. Acta 50 (3), 231242.

R. Verzicco  & P. Orlandi 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 8
Total number of PDF views: 185 *
Loading metrics...

Abstract views

Total abstract views: 280 *
Loading metrics...

* Views captured on Cambridge Core between 14th November 2016 - 21st September 2017. This data will be updated every 24 hours.