Skip to main content Accessibility help
×
Home

Dense granular flow rheology in turbulent bedload transport

  • Raphael Maurin (a1), Julien Chauchat (a2) and Philippe Frey (a1)

Abstract

The local granular rheology is investigated numerically in turbulent bedload transport. Considering spherical particles, steady uniform configurations are simulated using a coupled fluid–discrete-element model. The stress tensor is computed as a function of the depth for a series of simulations varying the Shields number, the specific density and the particle diameter. The results are analysed in the framework of the $\unicode[STIX]{x1D707}(I)$ rheology and exhibit a collapse of both the shear to normal stress ratio and the solid volume fraction over a wide range of inertial numbers. Contrary to expectations, the effect of the interstitial fluid on the granular rheology is shown to be negligible, supporting recent work suggesting the absence of a clear transition between the free-fall and turbulent regimes. In addition, data collapse is observed up to unexpectedly high inertial numbers $I\sim 2$ , challenging the existing conceptions and parametrisation of the $\unicode[STIX]{x1D707}(I)$ rheology. Focusing upon bedload transport modelling, the results are pragmatically analysed in the $\unicode[STIX]{x1D707}(I)$ framework in order to propose a granular rheology for bedload transport. The proposed rheology is tested using a 1D volume-averaged two-phase continuous model, and is shown to accurately reproduce the dense granular flow profiles and the sediment transport rate over a wide range of Shields numbers. The present contribution represents a step in the upscaling process from particle-scale simulations towards large-scale applications involving complex flow geometry.

Copyright

Corresponding author

Email address for correspondence: julien.chauchat@grenoble-inp.fr

Footnotes

Hide All

Present address: Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, 31400 Toulouse, France.

Footnotes

References

Hide All
Amoudry, L. O. 2014 Extension of turbulence closure to two-phase sediment transport modelling: application to oscillatory sheet flows. Adv. Water Resour. 72, 110121.
Anderson, T. B. & Jackson, R. 1967 Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam. 6 (4), 527539.
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.
Armanini, A., Capart, H., Fraccarollo, L. & Larcher, M. 2005 Rheological stratification in experimental free-surface flows of granular–liquid mixtures. J. Fluid Mech. 532, 269319.
Armanini, A., Larcher, M., Nucci, E. & Dumbser, M. 2014 Submerged granular channel flows driven by gravity. Adv. Water Resour. 63, 110.
Aussillous, P., Chauchat, J., Pailha, M., Médale, M. & Guazzelli, E. 2013 Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 736, 594615.
Bagnold, R. A. 1956 The flow of cohesionless grains in fluids. Phil. Trans. R. Soc. Lond. A 249, 235297.
Berzi, D. & Jenkins, J. T. 2008 A theoretical analysis of free-surface flows of saturated granular–liquid mixtures. J. Fluid Mech. 608, 393410.
Berzi, D., di Prisco, C. G. & Vescovi, D. 2011 Constitutive relations for steady, dense granular flows. Phys. Rev. E 84, 031301.
Börzsönyi, T., Ecke, R. E. & Mcelwaine, J. N. 2009 Patterns in flowing sand: understanding the physics of granular flow. Phys. Rev. Lett. 103, 178302.
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111, 238301.
Boyer, F., Guazzelli, É. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.
Campbell, C. S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22 (1), 5790.
Capart, H. & Fraccarollo, L. 2011 Transport layer structure in intense bed-load. Geophys. Res. Lett. 38 (20), L20402.
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17 (10), 103301.
Chauchat, J., Guillou, S., Pham Van Bang, D. & Dan Nguyen, K. 2013 Modelling sedimentation-consolidation in the framework of a one-dimensional two-phase flow model. J. Hydraul Res. 51 (3), 293305.
Chauchat, J., Revil-Baudard, T. & Hurther, D. 2015 An improved two-phase flow model for steady uniform sheet-flow based on dense granular flow rheology. In 36th IAHR World Congress, The Hague.
Chiodi, F., Claudin, P. & Andreotti, B. 2014 A two-phase flow model of sediment transport: transition from bedload to suspended load. J. Fluid Mech. 755, 561581.
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90, 044301.
Cowen, E. A., Dudley, R. D., Liao, Q., Variano, E. A. & Liu, P. L.-F. 2010 An in situ borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity. Exp. Fluids 49 (1), 7788.
Da Cruz, F., Chevoir, F., Roux, J. N. & Iordanoff, I. 2004 Macroscopic friction of dry granular materials. In Transient Processes in Tribology (ed. Dalmaz, G., Lubrecht, A. A., Dowson, D. & Priest, M.), Tribology and Interface Engineering Series, vol. 43, pp. 5361; 30th Leeds–Lyon Symposium on Tribology, Inst. Natl Sci. Appl., Lyon, France, 2–5 September 2003, Elsevier.
Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.
Dallavalle, J. M. 1948 Micrometrics: The Technology of Fine Particles, 2nd edn. Pitman Publishing Corporation.
Doppler, D., Gondret, P., Loiseleux, T., Meyer, S. & Rabaud, M. 2007 Relaxation dynamics of water-immersed granular avalanches. J. Fluid Mech. 577, 161181.
Duran, O., Andreotti, B. & Claudin, P. 2012 Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24 (10), 103306.
Einstein, H. A. 1942 Formulas for the transport of bed sediment. Trans. ASCE 107, 561574.
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.
Fredsøe, J. & Deigaard, R. 1992 Mechanics of Coastal Sediment Transport. World Scientific.
Frey, P. 2014 Particle velocity and concentration profiles in bedload experiments on a steep slope. Earth Surf. Process. Landf. 39 (5), 646655.
Frey, P. & Church, M. 2009 How river beds move. Science 325, 15091510.
Frey, P. & Church, M. 2011 Bedload: a granular phenomenon. Earth Surf. Process. Landf. 36, 5869.
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35 (1), 267293.
Goldhirsch, I. 2010 Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matt. 12 (3), 239252.
Hergault, V., Frey, P., Métivier, F., Barat, C., Ducottet, C., Böhm, T. & Ancey, C. 2010 Image processing for the study of bedload transport of two-size spherical particles in a supercritical flow. Exp. Fluids 49 (5), 10951107.
Holyoake, A. J. & Mcelwaine, J. N. 2012 High-speed granular chute flows. J. Fluid Mech. 710, 3571.
Houssais, M., Ortiz, C. P., Durian, D. J. & Jerolmack, D. J. 2015 Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nature Communications 6, 6527.
Hsu, T. J., Jenkins, J. T. & Liu, P. L. F. 2004 On two-phase sediment transport: sheet flow of massive particles. Proc. R. Soc. Lond. A 460 (2048), 22232250.
Izard, E., Bonometti, T. & Lacaze, L. 2014 Simulation of an avalanche in a fluid with a soft-sphere/immersed boundary method including a lubrication force. J. Comput. Multiphase Flows 6 (4), 391406.
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.
Jenkins, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18 (10), 103307.
Jenkins, J. T. 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10 (1), 4752.
Jenkins, J. T. & Hanes, D. M. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. J. Fluid Mech. 370, 2952.
Ji, C., Munjiza, A., Avital, E., Ma, J. & Williams, J. J. R. 2013 Direct numerical simulation of sediment entrainment in turbulent channel flow. Phys. Fluids 25 (5), 056601.
Jop, P. 2015 Rheological properties of dense granular flows. C. R. Phys. 16 (1), 6272.
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301.
Kidanemariam, A. G. & Uhlmann, M. 2014 Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. Intl J. Multiphase Flow 67 (0), 174188.
Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. 2001 Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 17571760.
Lajeunesse, E., Malverti, L. & Charru, F. 2010 Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. 115, F04001.
Larcher, M., Fraccarollo, L., Armanini, A. & Capart, H. 2007 Set of measurement data from flume experiments on steady uniform debris flows. J. Hydraul Res. 45, 5971.
Lee, C.-H., Low, Y. M. & Chiew, Y.-M. 2016 Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour. Phys. Fluids 28 (5), 053305.
Li, L. & Sawamoto, M. 1995 Multi-phase model on sediment transport in sheet-flow regime under oscillatory flow. Coast. Engng Japan 38, 157178.
Lois, G., Lemaître, A. & Carlson, J. M. 2006 Emergence of multi-contact interactions in contact dynamics simulations of granular shear flows. Europhys. Lett. 76 (2), 318324.
Maurin, R.2015 Investigation of granular behavior in bedload transport using an Eulerian–Lagrangian model. PhD thesis, Université Grenoble Alpes.
Maurin, R., Chauchat, J., Chareyre, B. & Frey, P. 2015 A minimal coupled fluid–discrete element model for bedload transport. Phys. Fluids 27 (11), 113302.
Meyer-Peter, E. & Müller, R. 1948 Formulas for bed-load transport. In Proceedings of the 2nd Meeting, pp. 3964. IAHR.
Midi, G. D. R. 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.
Mouilleron, H., Charru, F. & Eiff, O. 2009 Inside the moving layer of a sheared granular bed. J. Fluid Mech. 628, 229239.
Ouriemi, M., Aussillous, P. & Guazzelli, E. 2009 Sediment dynamics. Part 1. Bed-load transport by laminar shearing flows. J. Fluid Mech. 636, 295319.
Prandtl, L. 1926 Bericht über neuere Turbulenzforschung. Hydraulische Probleme. Vorträge Hydrauliktagung Göttingen 5, 113.
Revil-Baudard, T. & Chauchat, J. 2013 A two-phase model for sheet flow regime based on dense granular flow rheology. J. Geophys. Res. 118 (2), 619634.
Revil-Baudard, T., Chauchat, J., Hurther, D. & Barraud, P.-A. 2015 Investigation of sheet-flow processes based on novel acoustic high-resolution velocity and concentration measurements. J. Fluid Mech. 767, 130.
Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M. & Delannay, R. 2008 Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101, 248002.
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidization: part I. Trans. Inst. Chem. Engrs 32, 3553.
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (7), 073301.
Roux, J.-N. & Combe, G. 2002 Quasistatic rheology and the origins of strain. C. R. Phys. 3 (2), 131140.
Schwager, T. & Pöschel, T. 2007 Coefficient of restitution and linear spring–dashpot model revisited. Granul. Matt. 9, 465469.
Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Dyck, N., Elias, J., Er, B., Eulitz, A., Gladky, A. et al. 2015 Yade Documentation, 2nd edn. The Yade Project (http://yade-dem.org/doc/) doi:10.5281/zenodo.34073.
Sumer, B. M., Kozakiewicz, A., Fredsøe, J. & Deigaard, R. 1996 Velocity and concentration profiles in sheet-flow layer of movable bed. J. Hydraul. Engng ASCE 122 (10), 549558.
Trulsson, M., Andreotti, B. & Claudin, P. 2012 Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109, 118305.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed