Skip to main content
    • Aa
    • Aa

Development of the trailing shear layer in a starting jet during pinch-off

  • L. Gao (a1) and S. C. M. Yu (a1)

Experiments on a circular starting jet generated by a piston–cylinder arrangement, over a range of Reynolds number from to , are conducted so as to investigate the development of the trailing shear layer during the leading vortex ring formation, as well as the corresponding effects on the pinch-off process. Results obtained by digital particle image velocimetry (DPIV) show that secondary vortices start to develop in the trailing jet only after the critical time scale, the ‘formation number’, is achieved. The subsequent growth of the secondary vortices reduces the vorticity flux being fed into the leading vortex ring and, as a consequence, constrains the growth of leading vortex ring with larger circulation. Evolution of perturbation waves into secondary vortices is found to associate with growth and translation of the leading vortex ring during the formation process. A dimensionless parameter ‘’, defined as ), is therefore proposed to characterize the effect of the leading vortex ring on suppressing the nonlinear development of instability in the trailing shear layer, i.e. the initial roll-up of the secondary vortices. In a starting jet, follows a decreasing trend with the formation time . A critical value is identified experimentally, which physically coincides with the initiation of the first secondary vortex roll-up and, therefore, indicates the onset of pinch-off process.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. J. J. Allen & T. Naitoh 2005 Experimental study of the production of vortex rings using a variable diameter orifice. Phys. Fluids 17, 061701.

4. J. Cohen & I. Wygnanski 1987 The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.

5. J. O. Dabiri & M. Gharib 2004 Delay of vortex ring pinchoff by an imposed bulk counterflow. Phys. Fluids 16, L28.

6. J. O. Dabiri & M. Gharib 2005 Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.

7. N. Didden 1979 On the formation of vortex rings: rolling-up and production of circulation. J. Appl. Math. Phys. (Z. Angew. Math. Phys.) 30 (1), 101116.

9. L. Gao & S. C. M. Yu 2010 A model for the pinch-off process of the leading vortex ring in a starting jet. J. Fluid Mech. 656, 205222.

10. L. Gao , S. C. M. Yu , J. J. Ai & A. W. K. Law 2008 Circulation and energy of the leading vortex ring in a gravity-driven starting jet. Phys. Fluids 20, 093604.

11. M. Gharib , E. Rambod & K. Shariff 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.

12. A. T. Hjelmfelt & L. F. Mockros 1966 Motion of discrete particles in a turbulent fluid. Appl. Sci. Res. 16 (1), 149161.

14. P. S. Krueger , J. O. Dabiri & M. Gharib 2006 The formation number of vortex rings formed in uniform background co-flow. J. Fluid Mech. 556, 147166.

15. P. S. Krueger & M. Gharib 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15, 1271.

16. T. T. Lim 1997 A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers. Phys. Fluids 9, 239.

17. T. Maxworthy 1972 The structure and stability of vortex rings. J. Fluid Mech. 51 (01), 1532.

18. R. Mei 1996 Velocity fidelity of flow tracer particles. Exp. Fluids 22 (1), 113.

20. A. Michalke & G. Hermann 1982 On the inviscid instability of a circular jet with external flow. J. Fluid Mech. 114, 343359.

21. K. Mohseni & M. Gharib 1998 A model for universal time scale of vortex ring formation. Phys. Fluids 10, 2436.

22. K. Mohseni , H. Ran & T. Colonius 2001 Numerical experiments on vortex ring formation. J. Fluid Mech. 430, 267282.

23. P. J. Morris 1976 The spatial viscous instability of axisymmetric jets. J. Fluid Mech. 77 (03), 511529.

24. C. O’Farrell & J. O. Dabiri 2010 A Lagrangian approach to identifying vortex pinch-off. Chaos 20, 017513.

25. G. Pawlak , C. Marugan Cruz , C. Martínez Bazán & P. García Hrdy 2007 Experimental characterization of starting jet dynamics. Fluid Dyn. Res. 39 (11–12), 711730.

26. N. Riley & D. P. Stevens 1993 A note on leapfrogging vortex rings. Fluid Dyn. Res. 11 (5), 235244.

27. M. Rosenfeld , E. Rambod & M. Gharib 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.

28. P. G. Saffman 1965 The lift on a small sphere in a shear flow. J. Fluid Mech. 22, 385400.

31. M. Shusser & M. Gharib 2000 Energy and velocity of a forming vortex ring. Phys. Fluids 12, 618.

32. M. Shusser , M. Gharib , M. Rosenfeld & K. Mohseni 2002 On the effect of pipe boundary layer growth on the formation of a laminar vortex ring generated by a piston/cylinder arrangement. Theor. Comput. Fluid Dyn. 15 (5), 303316.

33. V. Todde , P. G. Spazzini & M. Sandberg 2009 Experimental analysis of low-Reynolds number free jets. Exp. Fluids 47 (2), 279294.

34. C. E. Willert & M. Gharib 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.

35. W. Zhao , S. H. Frankel & L. G. Mongeau 2000 Effects of trailing jet instability on vortex ring formation. Phys. Fluids 12, 589.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 93 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st August 2017. This data will be updated every 24 hours.