No CrossRef data available.
Published online by Cambridge University Press: 06 January 2014
A local available potential energy (APE) density useful as suitable diagnostic tool in turbulent stratified flows is considered under the Boussinesq approximation. The local APE is positive, and in the limit of infinitesimal perturbation from an equilibrium state recovers the Lorenz energy cycle definition of APE. In a turbulent stratified flow, the APE can be Reynolds-decomposed into non-trivial mean and turbulent components, which are connected to the mean and turbulent kinetic energy by suitably defined fluxes. We show that the turbulent buoyancy flux $\overline{w'b'}$ and the rate of production of turbulent APE coincide only under very special circumstances. The framework is applied to derive some global bounds on the mixing efficiency of some representative flows.