Skip to main content Accessibility help

Differential formulation of the viscous history force on a particle for efficient and accurate computation

  • M. Parmar (a1), S. Annamalai (a1), S. Balachandar (a1) and A. Prosperetti (a2) (a3)

It is well known that the computation of the Basset-like history force is very demanding in terms of CPU and memory requirements, since it requires the evaluation of a history integral. We use the recent rational theory of Beylkin & Monzón (Appl. Comput. Harmon. Anal., vol. 19, 2005, pp. 17–48) to approximate the history kernel in the form of exponential sums to reformulate the viscous history force in a differential form. This theory allows us to approximate the history kernel in terms of exponential sums to any desired order of accuracy. This removes the need for long-time storage of the acceleration histories of the particle and the fluid. The proposed differential form approximation is applied to compute the history force on a spherical particle in a synthetic turbulent flow and a wall-bounded turbulent channel flow. Particles of various diameters are considered, and results obtained using the present technique are in reasonable agreement with those achieved using the full history integral.

Corresponding author
Email address for correspondence:
Hide All
Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35, 801810.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Basset, A. B. 1888 Treatise on Hydrodynamics. Deighton, Bell and Company.
Beylkin, G. & Monzón, L. 2005 On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 1748.
Bombardelli, F. A., Gonzalez, A. E. & Nino, Y. I. 2008 Computation of the particle Basset force with a fractional-derivative approach. J. Hydraul. Eng.-ASCE 134 (10), 15131520.
Boussinesq, J. 1885 Sur la résistance qu’oppose un liquide indéfini au repos au mouvement varié d’une sphère solide. C. R. Acad. Sci. Paris 100, 935937.
Brush, L. M., Ho, H. W. & Yen, B. C. 1964 Accelerated motion of a sphere in a viscous fluid. J. Hydraul. Engng 90, 149160.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.
Daitche, Anton 2013 Advection of inertial particles in the presence of the history force: higher order numerical schemes. J. Comput. Phys. 254, 93106.
Dorgan, A. J. & Loth, E. 2007 Efficient calculation of the history force at finite Reynolds numbers. Intl J. Multiphase Flow 33 (8), 833848.
Elghannay, H. A. & Tafti, D. K. 2016 Development and validation of a reduced order history force model. Intl J. Multiphase Flow 85, 284297.
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.
Ferry, J. & Balachandar, S. 2002 Equilibrium expansion for the Eulerian velocity of small particles. Powder Technol. 125 (2–3), 131139.
Ferry, J., Rani, S. L. & Balachandar, S. 2003 A locally implicit improvement of the equilibrium Eulerian method. Intl J. Multiphase Flow 29 (6), 869891.
van Hinsberg, M. A. T., Ten Thije Boonkkamp, J. H. M. & Clercx, H. J. H. 2011 An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys. 230 (4), 14651478.
Landau, L. D. & Lifschitz, E. M. 1987 Fluid Mechanics, Course of Theroretical Physics, vol. 6. Butterworth-Heinemann.
Lee, H., Ha, M. Y. & Balachandar, S. 2012 Work-based criterion for particle motion and implication for turbulent bed-load transport. Phys. Fluids 24 (11), 116604.
Lee, H. & Hsu, I. 1994 Investigation of saltating particle motion. J. Hydraul. Engng 120 (7), 831845.
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.
Longhorn, A. L. 1952 The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q. J. Mech. Appl. Maths 5, 6481.
Lovalenti, P. M. & Brady, J. F. 1993a The force on a sphere in a uniform-flow with small-amplitude oscillations at finite Reynolds-number. J. Fluid Mech. 256, 607614.
Lovalenti, P. M. & Brady, J. F. 1993b The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds-number. J. Fluid Mech. 256, 561605.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.
Mei, R. 1993 History force on a sphere due to a step change in the free-stream velocity. Intl J. Multiphase Flow 19 (3), 509525.
Mei, R. W. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.
Michaelides, E. E. 1992 A Novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A 4 (7), 15791582.
Mordant, N. & Pinton, J. F. 2000 Velocity measurement of a settling sphere. Eur. Phys. J. B 18 (2), 343352.
Nino, I. & Garcia, M. 1998 Using Lagrangian particle saltation observations for bedload sediment transport modelling. Hydrol. Process. 12, 11971218.
Parmar, M., Balachandar, S. & Haselbacher, A. 2012a Equation of motion for a drop or bubble in viscous compressible flows. Phys. Fluids 24, 056103.
Parmar, M., Balachandar, S. & Haselbacher, A. 2012b Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.
Parmar, M., Haselbacher, A. & Balachandar, S. 2008 On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. R. Soc. Lond. A 366 (1873), 21612175.
Parmar, M., Haselbacher, A. & Balachandar, S. 2011 Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106 (8), 084501.
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.
Schmeeckle, M. W. & Nelson, J. M. 2003 Direct numerical simulation of bedload transport using a local, dynamic boundary condition. Sedimentology 50, 279301.
Sobral, Y. D., Oliveira, T. F. & Cunha, F. R. 2007 On the unsteady forces during the motion of a sedimenting particle. Powder Technol. 178 (2), 129141.
Taylor, G. I. 1928 The forces on a body placed in a curved or converging stream of fluid. Proc. R. Soc. Lond. A 120 (785), 260283.
Tchen, C. M.1947 Mean value and correction problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, Delft University, Hague.
Vojir, D. J. & Mchaelides, E. E. 1994 Effect of the history term on the motion of rigid spheres in a viscous-fluid. Intl J. Multiphase Flow 20 (3), 547556.
Wood, I. R. & Jenkins, B. S. 1973 A numerical study of the suspension of a non-buoyant particle in a turbulent stream. In Proceedings of the IAHR International Symposium on River Mechanics, vol. 1, pp. 431442. Asian Institute of Technology.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed