Arienti, M. & Shepherd, J. E.
2005
A numerical study of detonation diffraction. J. Fluid Mech.
529, 117–146.

Berger, M.1982 Adaptive mesh refinement for hyperbolic differential equations. *Report no.* STAN-CS-82-924, Stanford University.

Berger, M. & Olier, J.
1984
Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys.
53, 484–512.

Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M., Maines, G., Maley, L. & Radulescu, M. I.
2013
Detonation re-initiation mechanism following the Mach reflection of a quenched detonation. Proc. Combust. Inst.
34, 1893–1901.

Cai, X. D., Liang, J. H., Lin, Z. Y., Deiterding, R. & Liu, Y.
2014
Parametric study of detonation initiation using a hot jet in supersonic combustible mixtures. Aerosp. Sci. Technol.
39, 442–455.

Cai, X. D., Liang, J. H., Lin, Z. Y., Deiterding, R. & Zhuang, F. C.
2015a
Detonation initiation and propagation in nonuniform supersonic combustible mixtures. Combust. Sci. Technol.
187 (4), 525–536.

Cai, X. D., Liang, J. H., Lin, Z. Y., Deiterding, R., Qin, H. & Han, X.
2015b
Adaptive mesh refinement-based numerical simulation of detonation initiation in supersonic combustible mixtures using a hot jet. ASCE J. Aerosp. Engng
28 (1), 04014046.

Cai, X. D., Liang, J. H. & Deiterding, R.
2016
Numerical investigation on detonation control using a pulse hot jet in supersonic combustible mixture. Combust. Sci. Technol.
188, 1674–1690.

Cai, X. D., Liang, J. H., Deiterding, R. & Lin, Z. Y.
2016a
Adaptive simulations of cavity-based detonation in supersonic hydrogen–oxygen mixture. Intl J. Hydrogen Energy
41, 6917–6928.

Cai, X. D., Liang, J. H., Deiterding, R. & Lin, Z. Y.
2016b
Detonation simulations in supersonic combustible mixtures with nonuniform species. AIAA J.
54 (8), 2449–2462.

Cai, X. D., Liang, J. H., Deiterding, R., Che, Y. G. & Lin, Z. Y.
2016c
Adaptive mesh refinement based simulations of three-dimensional detonation combustion in supersonic combustible mixtures with a detailed reaction model. Intl J. Hydrogen Energy
41, 3222–3239.

Cai, X. D., Deiterding, R., Liang, J. H. & Mahmoudi, Y.
2017
Adaptive simulations of viscous detonation using high-order hybrid WENO-CD scheme with a hot jet initiation. Proc. Combust. Inst.
36, 2725–2733.

Deiterding, R.2003 Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universität Cottbus, Cottbus.

Deiterding, R.
2009
A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct.
87, 769–783.

Deiterding, R.
2011
High-resolution numerical simulation and analysis of Mach reflection structures in detonation waves in low-pressure H_{2}–O_{2}–Ar mixtures: a summary of results obtained with the adaptive mesh refinement framework AMROC. J. Combust.
2011, 1–18.

Gallier, S., Le Palud, F., Pintgen, F., Mével, R. & Shepherd, J. E.
2017
Detonation wave diffraction in H_{2}–O_{2}–Ar mixtures. Proc. Combust. Inst.
36 (2), 2781–2789.

Gamezo, V. N., Desbordes, D. & Oran, E. S.
1999
Formation and evolution of two-dimensional cellular detonations. Combust. Flame
116, 154–165.

Gamezo, V. N., Khokhlov, A. M. & Oran, E. S.
2001
The influence of shock bifurcation on shock flame interactions and DDT. Combust. Flame
126, 1810–1826.

Gamezo, V. N., Ogawa, T. & Oran, E. S.
2007
Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proc. Combust. Inst.
31, 2463–2471.

Gamezo, V. N., Ogawa, T. & Oran, E. S.
2008
Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing. Combust. Flame
155, 302–315.

Goodwin, G. B., Houim, R. W. & Oran, E. S.
2016
Effect of decreasing blockage ratio on DDT in small channels with obstacles. Combust. Flame
173, 16–26.

Goodwin, G. B., Houim, R. W. & Oran, E. S.
2017
Shock transition to detonation in channels with obstacles. Proc. Combust. Inst.
36 (2), 2717–2724.

Grogan, K. P. & Ihme, M.
2015
Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proc. Combust. Inst.
35, 2181–2189.

Hu, X. Y., Khoo, B. C., Zhang, D. L. & Jiang, Z. L.
2004
The cellular structure of a two-dimensional H_{2}/O_{2}/Ar detonation wave. Combust. Theor. Model.
8, 339–359.

Hu, X. Y., Zhang, D. L., Khoo, B. C. & Jiang, Z. L.
2005
The structure and evolution of a two-dimensional H_{2}/O_{2}/Ar cellular detonation. Shock Waves
14, 37–44.

Kaps, P. & Rentrop, P.
1979
Generalized Runge–Kutta methods of order four with step size control for stiff ordinary differential equations. Numer. Math.
33, 55–68.

Kessler, D. A., Gamezo, V. N. & Oran, E. S.
2010
Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems. Combust. Flame
157, 2063–2077.

Kessler, D. A., Gamezo, V. N. & Oran, E. S.
2011
Multilevel detonation cell structures in methane–air mixtures. Proc. Combust. Inst.
33, 2211–2218.

Lee, J. H. S.
1984
Dynamic parameters of gaseous detonation. Annu. Rev. Fluid Mech.
16, 311–336.

Lee, J. H. S.
2008
The Detonation Phenomenon. Cambridge University Press.

Liang, Z. & Bauwens, L.
2005
Detonation structure with pressure-dependent chain-branching kinetics. Proc. Combust. Inst.
30, 1879–1887.

Liang, Z., Browne, S., Deiterding, R. & Shepherd, J. E.
2007
Detonation front structure and the competition for radicals. Proc. Combust. Inst.
31, 2445–2453.

Liang, J. H., Cai, X. D., Lin, Z. Y. & Deiterding, R.
2014
Effects of a hot jet on detonation initiation and propagation in supersonic combustible mixtures. Acta Astronaut.
105 (1), 265–277.

Lv, Y. & Ihme, M.
2015
Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proc. Combust. Inst.
35, 1963–1972.

Mach, P. & Radulescu, M. I.
2011
Mach reflection bifurcations as a mechanism of cell multiplication in gaseous detonations. Proc. Combust. Inst.
33, 2279–2285.

Mahmoudi, Y., Karimi, N., Deiterding, R. & Emami, S.
2014
Hydrodynamic instabilities in gaseous detonations: comparison of Euler, Navier–Stokes, and large-eddy simulation. J. Propul. Power
30, 384–396.

Mahmoudi, Y. & Mazaheri, K.
2011
High resolution numerical simulation of the structure of 2-D gaseous detonations. Proc. Combust. Inst.
33, 2187–2194.

Mahmoudi, Y. & Mazaheri, K.
2012
Triple point collision and hot spots in detonations with regular structure. Combust. Sci. Technol.
184, 1135–1151.

Mahmoudi, Y. & Mazaheri, K.
2015
High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations. Acta Astronaut.
115, 40–51.

Maley, L., Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M. & Radulescu, M. I.
2015
Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc. Combust. Inst.
35, 2117–2126.

Maxwell, B. M., Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M., Falle, S. A. E. G., Sharpe, G. J. & Radulescu, M. I.
2017
Influence of turbulent fluctuations on detonation propagation. J. Fluid Mech.
818, 646–696.

Mazaheri, K., Mahmoudi, Y. & Radulescu, M. I.
2012
Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame
113, 2138–2154.

Mazaheri, K., Mahmoudi, Y., Sabzpooshani, M. & Radulescu, M. I.
2015
Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls. Combust. Flame
162, 2638–2659.

Melguizo-Gavilanes, J. & Bauwens, L.
2013
Shock initiated ignition for hydrogen mixtures of different concentrations. Intl J. Hydrogen Energy
38, 8061–8067.

Melguizo-Gavilanes, J., Rezaeyan, N., Tian, M. & Bauwens, L.
2011
Shock-induced ignition with single step Arrhenius kinetics. Intl J. Hydrogen Energy
36, 2374–2380.

Mével, R., Davidenko, D., Lafosse, F., Chaumeix, N., Dupré, G., Paillard, C. & Shepherd, J. E.
2015
Detonation in hydrogen–nitrous oxide-diluent mixtures: an experimental and numerical study. Combust. Flame
162, 1638–1649.

Ng, H. D., Botros, B. B., Chao, J., Yang, J. M., Nikiforakis, N. & Lee, J. H. S.
2006
Head-on collision of a detonation with a planar shock wave. Shock Waves
15, 341–352.

Ng, H. D. & Lee, J. H. S.
2003
Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech.
476, 179–211.

Oran, E. S. & Gamezo, V. N.
2007
Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame
148, 4–47.

Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H. & Anderson, J. D.
1998
A numerical study of two-dimensional H_{2}–O_{2}–Ar detonation using a detailed chemical reaction model. Combust. Flame
113, 147–163.

Paolucci, S., Zikoski, Z. J. & Grenga, T.
2014b
WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part II. The parallel algorithm. J. Comput. Phys.
272, 842–864.

Paolucci, S., Zikoski, Z. J. & Wirasaet, D.
2014a
WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part I. Accuracy and efficiency of algorithm. J. Comput. Phys.
272, 814–841.

Pintgen, F., Eckett, C. A., Austin, J. M. & Shepherd, J. E.
2003
Direct observations of reaction zone structure in propagating detonations. Combust. Flame
133, 211–229.

Radulescu, M. I. & Maxwell, B. McN.
2011
The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. J. Fluid Mech.
667, 96–134.

Radulescu, M. I., Sharpe, G. J., Law, C. K. & Lee, J. H. S.
2007
The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech.
580, 31–81.

Radulescu, M. I., Sharpe, G. J., Lee, J. H. S., Kiyanda, C. B., Higgins, A. J. & Hanson, R. K.
2005
The ignition mechanism in irregular structure gaseous detonations. Proc. Combust. Inst.
30 (2), 1859–1867.

Romick, C. M., Aslam, T. D. & Powers, J. M.
2012
The effect of diffusion on the dynamics of unsteady detonations. J. Fluid Mech.
699, 453–464.

Romick, C. M., Aslam, T. D. & Powers, J. M.
2015
Verified and validated calculation of unsteady dynamics of viscous hydrogen–air detonations. J. Fluid Mech.
769, 154–181.

Samtaney, R. & Pullin, D. I.
1996
On initial-value and self-similar solutions of the compressible Euler equations. Phys. Fluids
8, 2650–2655.

Sharpe, G. J.
2001
Transverse wave in numerical simulations of cellular detonation. J. Fluid Mech.
447, 31–51.

Shen, H. & Parsani, M.
2017
The role of multidimensional instabilities in direct initiation of gaseous detonations in free space. J. Fluid Mech.
813, R4.

Shepherd, J. E.
2009
Detonation in gases. Proc. Combust. Inst.
32, 83–98.

Singh, S., Rastigejev, Y., Paolucci, S. & Powers, J. M.
2001
Viscous detonation in H_{2}–O_{2}–Ar using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation. Combust. Theory Model.
5 (2), 163–184.

Smirnov, N. N., Betelin, V. B., Shagaliev, R. M., Nikitin, V. F., Belyakov, I. M., Deryuguin, Y. N., Aksenov, S. V. & Korchazhkin, D. A.
2014
Hydrogen fuel rocket engines simulation using LOGOS code. Intl J. Hydrogen Energy
39, 10748–10756.

Smirnov, N. N. & Nikitin, V. F.
2014
Modeling and simulation of hydrogen combustion in engines. Intl J. Hydrogen Energy
39, 1122–1136.

Smirnov, N. N., Nikitin, V. F., Stamov, L. I. & Altoukhov, D. I.
2015
Supercomputing simulations of detonation of hydrogen–air mixtures. Intl J. Hydrogen Energy
40, 11059–11074.

Taylor, B. D., Kessler, D. A., Gamezo, V. N. & Oran, E. S.
2013
Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proc. Combust. Inst.
34, 2009–2016.

Varatharajan, B. & Williams, F. A.
2001
Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene–oxygen-diluent systems. Combust. Flame
124, 624–645.

Watt, S. D. & Sharpe, G. J.
2005
Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech.
522, 329–356.

Williams, F. A.
1985
Combustion Theory. Addison-Wesley.

Ziegler, J. L.2011 Simulations of compressible, diffusive, reactive flows with detailed chemistry using a high-order hybrid WENO-CD scheme. PhD thesis, California Institute of Technology, Pasadena, CA.

Ziegler, J. L., Deiterding, R., Shepherd, J. E. & Pullin, D. I.
2011
An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry. J. Comput. Phys.
230, 7598–7630.