Skip to main content Accessibility help
×
Home

Diffusiophoresis, Batchelor scale and effective Péclet numbers

  • Florence Raynal (a1) and Romain Volk (a2)

Abstract

We study the joint mixing of colloids and salt released together in a stagnation point or in a globally chaotic flow. In the presence of salt inhomogeneities, the mixing time is strongly modified depending on the sign of the diffusiophoretic coefficient $D_{dp}$ . Mixing is delayed when $D_{dp}>0$ (salt-attracting configuration), or faster when $D_{dp}<0$ (salt-repelling configuration). In both configurations, as for molecular diffusion alone, large scales are barely affected in the dilating direction while the Batchelor scale for the colloids, $\ell _{c,diff}$ , is strongly modified by diffusiophoresis. We propose here to measure a global effect of diffusiophoresis in the mixing process through an effective Péclet number built on this modified Batchelor scale. Whilst this small scale is obtained analytically for the stagnation point, in the case of chaotic advection, we derive it using the equation of gradients of concentration, following Raynal & Gence (Intl J. Heat Mass Transfer, vol. 40 (14), 1997, pp. 3267–3273). Comparing to numerical simulations, we show that the mixing time can be predicted by using the same function as in absence of salt, but as a function of the effective Péclet numbers computed for each configuration. The approach is shown to be valid when the ratio $D_{dp}^{2}/D_{s}D_{c}\gg 1$ , where $D_{c}$ and $D_{s}$ are the diffusivities of the colloids and salt.

Copyright

Corresponding author

Email addresses for correspondence: florence.raynal@ec-lyon.fr, romain.volk@ens-lyon.fr

References

Hide All
Abécassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A. & Bocquet, L. 2009 Osmotic manipulation of particles for microfluidic applications. New J. Phys. 11 (7), 075022.
Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.
Bakunin, O. G.(Ed.) 2011 Chaotic Flows. Springer.
Banerjee, A., Williams, I., Azevedo, R. N., Helgeson, M. E. & Squires, T. M. 2016 Soluto-inertial phenomena: designing long-range, long-lasting, surface-specific interactions in suspensions. Proc. Natl Acad. Sci. USA 113 (31), 86128617.
Biferale, L., Crisanti, A., Vergassola, M. & Vulpiani, A. 1995 Eddy diffusivities in scalar transport. Phys. Fluids 7 (11), 27252734.
Birch, D. A., Young, W. R. & Franks, P. J. S. 2008 Thin layers of plankton: formation by shear and death by diffusion. Deep-Sea Res. I 55 (3), 277295.
Deseigne, J., Cottin-Bizonne, C., Stroock, A. D., Bocquet, L. & Ybert, C. 2014 How a “pinch of salt” can tune chaotic mixing of colloidal suspensions. Soft Matt. 10, 47954799.
Frish, U. 1995 Turbulence-The Legacy of A. N. Kolmogorov. Cambridge University Press.
Mauger, C., Volk, R., Machicoane, N., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Raynal, F. 2016 Diffusiophoresis at the macroscale. Phys. Rev. Fluids 1, 034001.
Metcalfe, G., Speetjens, M. F. M., Lester, D. R. & Clercx, H. J. H. 2012 Beyond passive: chaotic transport in stirred fluids. In Advances in Applied Mechanics, vol. 45, pp. 109188. Elsevier.
Pierrehumbert, R. T. 1994 Tracer microstructure in the large-eddy dominated regime. Chaos, Solitons Fractals 4 (6), 10911110.
Pierrehumbert, R. T. 2000 Lattice models of advection-diffusion. Chaos 10 (1), 6174.
Ranz, W. E. 1979 Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows. AIChE J. 25 (41), 075022.
Raynal, F., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Volk, R. 2018 Advection and diffusion in a chemically induced compressible flow. J. Fluid Mech. 847, 228243.
Raynal, F. & Gence, J.-N. 1997 Energy saving in chaotic laminar mixing. Intl J. Heat Mass Transfer 40 (14), 32673273.
Schmidt, L., Fouxon, I., Krug, D., van Reeuwijk, M. & Holzner, M. 2016 Clustering of particles in turbulence due to phoresis. Phys. Rev. E 93, 063110.
Shukla, V., Volk, R., Bourgoin, M. & Pumir, A. 2017 Phoresis in turbulent flows. New J. Phys. 19 (12), 123030.
Sundararajan, P. & Stroock, A. D. 2012 Transport phenomena in chaotic laminar flows. Annu. Rev. Fluid Mech. 3, 473493.
Villermaux, E. 2019 Mixing versus stirring. Annu. Rev. Fluid Mech. 51, 245273.
Volk, R., Mauger, C., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Raynal, F. 2014 Chaotic mixing in effective compressible flows. Phys. Rev. E 90, 013027.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed