Skip to main content
×
×
Home

Diffusiophoresis in narrow channel flows

  • Jesse T. Ault (a1), Sangwoo Shin (a2) and Howard A. Stone (a3)
Abstract

Flows containing suspended colloidal particles and dissolved solutes are found in a multitude of natural and man-made systems including hydraulic fractures, water filtration systems and microfluidic devices, e.g. those designed for biological or medical applications. In these types of systems, unexpected particle dynamics such as rapid particle transport and focusing has been observed in the presence of local solute gradients due to the cooperating or competing effects of fluid advection and particle diffusiophoresis, the latter driven by local chemical gradients. We develop analytical expressions for the fluid, solute and particle dynamics in long, narrow channels due to the combined influence of pressure-driven channel flow with diffusiophoretic and diffusioosmotic effects. The results confirm a rapid particle focusing effect that can be controlled by manipulating the particle, solute and flow properties, as well as the channel’s geometry and surface chemistry. Thus, we propose a new approach for performing microfluidic zeta potentiometry, as well as techniques for sorting, concentrating and/or capturing particles based on their sizes or zeta potentials. Finally, we demonstrate that diffusioosmotic effects can be used to pump fluid against a pressure gradient.

Copyright
Corresponding author
Email address for correspondence: aultjt@ornl.gov
References
Hide All
Abécassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A. & Bocquet, L. 2008 Boosting migration of large particles by solute contrasts. Nat. Mater. 7 (10), 785789.
Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.
Ault, J. T., Warren, P. B., Shin, S. & Stone, H. A. 2017 Diffusiophoresis in one-dimensional solute gradients. Soft Matt. 13 (47), 90159023.
Banerjee, A., Williams, I., Azevedo, R. N., Helgeson, M. E. & Squires, T. M. 2016 Soluto-inertial phenomena: designing long-range, long-lasting, surface-specific interactions in suspensions. Proc. Natl Acad. Sci. USA 113 (31), 86128617.
Brady, J. F. 2011 Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216259.
Derjaguin, B. V., Dukhin, S. S. & Korotkova, A. A. 1961 Diffusiophoresis in electrolyte solutions and its role in mechanism of film formation from rubber latexes by method of ionic deposition. Colloid J. USSR 23 (1), 53.
Derjaguin, B. V., Sidorenkov, G. P., Zubashchenkov, E. A. & Kiseleva, E. V. 1947 Kinetic phenomena in boundary films of liquids. Colloid J. USSR 9, 335347.
Duhr, S. & Braun, D. 2006 Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Phys. Rev. Lett. 97 (3), 038103.
Fan, Y., Shin, S. & Stone, H. A. 2018 Diffusiophoresis of a charged drop. J. Fluid Mech. 852, 3759.
Ferziger, J. H. & Peric, M. 2012 Computational Methods for Fluid Dynamics. Springer Science and Business Media.
Florea, D., Musa, S., Huyghe, J. M. R. & Wyss, H. M. 2014 Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proc. Natl Acad. Sci. USA 111 (18), 65546559.
Friedrich, S. M., Burke, J. M., Liu, K. J., Ivory, C. F. & Wang, T.-H. 2017 Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow. Nat. Commun. 8 (1), 1213.
Kar, A., Chiang, T.-Y., Rivera, I. O., Sen, A. & Velegol, D. 2015 Enhanced transport into and out of dead-end pores. ACS Nano 9 (1), 746753.
Kirby, B. J. 2010 Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press.
Kirby, B. J. & Hasselbrink, E. F. 2004 Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25 (2), 187202.
Lee, C., Cottin-Bizonne, C., Biance, A.-L., Joseph, P., Bocquet, L. & Ybert, C. 2014 Osmotic flow through fully permeable nanochannels. Phys. Rev. Lett. 112 (24), 244501.
Maeda, Y. T., Buguin, A. & Libchaber, A. 2011 Thermal separation: interplay between the Soret effect and entropic force gradient. Phys. Rev. Lett. 107 (3), 038301.
Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seiler, K. & Fluri, K. 1994 Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J. Micromech. Microengng 4 (4), 257265.
Nery-Azevedo, R., Banerjee, A. & Squires, T. M. 2017 Diffusiophoresis in ionic surfactant gradients. Langmuir 33 (38), 96949702.
Palacci, J., Abécassis, B., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2010 Colloidal motility and pattern formation under rectified diffusiophoresis. Phys. Rev. Lett. 104 (13), 138302.
Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2012 Osmotic traps for colloids and macromolecules based on logarithmic sensing in salt taxis. Soft Matt. 8 (4), 980994.
Paustian, J. S., Azevedo, R. N., Lundin, S.-T. B., Gilkey, M. J. & Squires, T. M. 2013 Microfluidic microdialysis: spatiotemporal control over solution microenvironments using integrated hydrogel membrane microwindows. Phys. Rev. X 3 (4), 041010.
Prieve, D. C., Anderson, J. L., Ebel, J. P. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247269.
Prieve, D. C. & Roman, R. 1987 Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J. Chem. Soc. Faraday Trans. 83 (8), 12871306.
Shi, N., Nery-Azevedo, R., Abdel-Fattah, A. I. & Squires, T. M. 2016 Diffusiophoretic focusing of suspended colloids. Phys. Rev. Lett. 117 (25), 258001.
Shin, S., Ault, J. T., Feng, J., Warren, P. B. & Stone, H. A. 2017a Low-cost zeta potentiometry using solute gradients. Adv. Mater. 29 (30), 1701516.
Shin, S., Ault, J. T., Warren, P. B. & Stone, H. A. 2017b Accumulation of colloidal particles in flow junctions induced by fluid flow and diffusiophoresis. Phys. Rev. X 7 (4), 041038.
Shin, S., Shardt, O., Warren, P. B. & Stone, H. A. 2017c Membraneless water filtration using CO2. Nat. Commun. 8, 15181.
Shin, S., Um, E., Sabass, B., Ault, J. T., Rahimi, M., Warren, P. B. & Stone, H. A. 2016 Size-dependent control of colloid transport via solute gradients in dead-end channels. Proc. Natl Acad. Sci. USA 113 (2), 257261.
Staffeld, P. O. & Quinn, J. A. 1989 Diffusion-induced banding of colloid particles via diffusiophoresis: 1. Electrolytes. J. Colloid Interface Sci. 130 (1), 6987.
Stein, D., Deurvorst, Z., van der Heyden, F. H. J., Koopmans, W. J. A., Gabel, A. & Dekker, C. 2010 Electrokinetic concentration of DNA polymers in nanofluidic channels. Nano Lett. 10 (3), 765772.
Stout, R. F. & Khair, A. S. 2017 Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes. Phys. Rev. Fluids 2 (1), 014201.
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620631.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed