Skip to main content Accessibility help

Direct control of the small-scale energy balance in two-dimensional fluid dynamics

  • Jason Frank (a1), Benedict Leimkuhler (a2) and Keith W. Myerscough (a3)


We explore the direct modification of the pseudo-spectral truncation of two-dimensional, incompressible fluid dynamics to maintain a prescribed kinetic energy spectrum. The method provides a means of simulating fluid states with defined spectral properties, for the purpose of matching simulation statistics to given information, arising from observations, theoretical prediction or high-fidelity simulation. In the scheme outlined here, Nosé–Hoover thermostats, commonly used in molecular dynamics, are introduced as feedback controls applied to energy shells of the Fourier-discretized Navier–Stokes equations. As we demonstrate in numerical experiments, the dynamical properties (quantified using autocorrelation functions) are only modestly perturbed by our device, while ensemble dispersion is significantly enhanced compared with simulations of a corresponding truncation incorporating hyperviscosity.


Corresponding author

Email address for correspondence:


Hide All
Abramov, R. V. & Majda, A. J. 2003 Statistically relevant conserved quantities for truncated quasigeostrophic flow. Proc. Natl Acad. Sci. USA 100 (7), 38413846.
Allen, M. P. & Tildesley, D. J. 1989 Computer Simulation of Liquids. (Oxford Science Publications) , vol. 57. Oxford University Press.
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12 (12), II233.
Berner, J., Shutts, G. J., Leutbecher, M. & Palmer, T. N. 2009 A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 66 (3), 603626.
Bofetta, G. & Musacchio, S. 2010 Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82 (1), 016307.
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515 (5), 227295.
Bracco, A., McWilliams, J., Murante, G., Provenzale, A. & Weiss, J. B. 2000 Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12 (11), 29312941.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 2006 Spectral Methods: Fundamentals in Single Domains. Springer.
Danilov, S. D. & Gurarie, D. 2000 Quasi-two-dimensional turbulence. Phys. Uspekhi 43 (9), 863900.
Delong, S., Griffith, B. E., Vanden-Eijnden, E. & Donev, A. 2013 Temporal integrators for fluctuating hydrodynamics. Phys. Rev. E 87 (3), 033302.
DelSole, T. 2000 A fundamental limitation of Markov models. J. Atmos. Sci. 57, 21582168.
Domaradzki, J. A. & Saiki, E. M. 1997 Backscatter models for large-eddy simulations. Theor. Comput. Fluid Dyn. 9 (2), 7583.
Donev, A., Vanden-Eijnden, E., Garcia, A. & Bell, J. 2010 On the accuracy of finite-volume schemes for fluctuating hydrodynamics. Commun. Appl. Maths Comput. Sci. 5 (2), 149197.
Dubinkina, S. & Frank, J. 2007 Statistical mechanics of Arakawa’s discretizations. J. Comput. Phys. 227 (2), 12861305.
Dubinkina, S. & Frank, J. 2010 Statistical relevance of vorticity conservation in the hamiltonian particle-mesh method. J. Comput. Phys. 229 (7), 26342648.
E, W., Mattingly, J. C. & Sinai, Y. 2001 Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Commun. Math. Phys. 224 (1), 83106.
E, W. & Mattingly, J. C. 2001 Ergodicity for the Navier–Stokes equation with degenerate random forcing: finite-dimensional approximation. Commun. Pure Appl. Math. 54 (11), 13861402.
Evensen, G. 2009 Data Assimilation: the Ensemble Kalman Filter, 2nd edn. Springer.
Farazmand, M. M., Kevlahan, N. K.-R. & Protas, B. 2011 Controlling the dual cascade of two-dimensional turbulence. J. Fluid Mech. 668, 202222.
Farge, M., Kevlahan, N., Perrier, V. & Goirand, E. 1996 Wavelets and turbulence. Proc. IEEE 84 (4), 639669.
Fatkullin, I. & Vanden-Eijnden, E. 2004 A computational strategy for multiscale systems with applications to lorenz 96 model. J. Comput. Phys. 200 (2), 605638.
Frank, J. & Gottwald, G. 2011 The Langevin limit of the Nosé–Hoover–Langevin thermostat. J. Stat. Phys. 143 (4), 715724.
Frenkel, D. & Smit, B. 2002 Understanding Molecular Simulation: From Algorithms to Applications. Springer.
Frisch, U. 1995 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.
Fröhlich, J. & Schneider, K. 1999 Computation of decaying turbulence in an adaptive wavelet basis. Physica D 134 (3), 337361.
Gotoh, T. 1998 Energy spectrum in the inertial and dissipation ranges of two-dimensional steady turbulence. Phys. Rev. E 57 (3), 2984.
Grooms, I. & Majda, A. J. 2013 Efficient stochastic superparameterization for geophysical turbulence. Proc. Natl Acad. Sci. USA 110 (12), 44644469.
Hairer, E., Lubich, C. & Wanner, G. 2006 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer.
Hasselmann, K. 1976 Stochastic climate models part I. Theory. Tellus 28 (6), 473485.
Hoover, W. G. 1985 Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31 (3), 1695.
Jansen, M. F. & Held, I. M. 2014 Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 3648.
Jones, A. & Leimkuhler, B. 2011 Adaptive stochastic methods for sampling driven molecular systems. J. Chem. Phys. 135 (8), 084125.
Kent, J., Thuburn, J. & Wood, N. 2012 Assessing implicit large eddy simulation for two-dimensional flow. Q. J. R. Meteorol. Soc. 138 (663), 365376.
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.
Kraichnan, R. H. 1971 Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47 (03), 525535.
Leimkuhler, B. & Matthews, C. 2013 Rational construction of stochastic numerical methods for molecular sampling. Appl. Math. Res. Express 2013 (1), 3456.
Leimkuhler, B., Noorizadeh, E. & Penrose, O. 2011 Comparing the efficiencies of stochastic isothermal molecular dynamics models. J. Stat. Phys. 143 (5), 921942.
Leimkuhler, B., Noorizadeh, E. & Theil, F. 2009 A gentle thermostat for molecular dynamics. J. Stat. Phys. 135 (2), 261277.
Leimkuhler, B. & Reich, S. 2004 Simulating Hamiltonian Dynamics. Cambridge University Press.
Leith, C. E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11 (3), 671672.
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.
Majda, A. J., Timofeyev, I. & Vanden Eijnden, E. 2001 A mathematical framework for stochastic climate models. Commun. Pure Appl. Maths 54 (8), 891974.
McLachlan, R. I. & Quispel, G. R. W. 2002 Splitting methods. Acta Numerica 11, 341434.
Miller, J. 1990 Statistical mechanics of euler equations in two dimensions. Phys. Rev. Lett. 65 (17), 2137.
Mori, H. 1965 Transport, collective motion, and brownian motion. Prog. Theor. Phys. 33 (3), 423455.
Nastrom, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42 (9), 950960.
Nastrom, G. D., Gage, K. S. & Jasperson, W. H. 1984 Kinetic energy spectrum of large- and mesoscale atmospheric processes. Nature 310, 3638.
Nosé, S. 1984a A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52 (2), 255268.
Nosé, S. 1984b A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81 (1), 511519.
Robert, R. 1991 A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys. 65 (3–4), 531553.
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.
Saffman, P. G. 1971 On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number. Stud. Appl. Maths 50, 377383.
Samoletov, A. A., Dettmann, C. P. & Chaplain, M. A. J. 2007 Thermostats for ‘slow’ configurational modes. J. Stat. Phys. 128 (6), 13211336.
Shutts, G. 2005 A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131 (612), 30793102.
Sukoriansky, S., Galperin, B. & Chekhlov, A. 1999 Large scale drag representation in simulations of two-dimensional turbulence. Phys. Fluids 11 (10), 30433053.
Thuburn, J., Kent, J. & Wood, N. 2014 Cascades, backscatter and conservation in numerical models of two-dimensional turbulence. Q. J. R. Meteorol. Soc. 140 (679), 626638.
Tulloch, R. & Smith, K. S. 2006 A theory for the atmospheric energy spectrum: depth-limited temperature anomalies at the tropopause. Proc. Natl Acad. Sci. USA 103 (40), 1469014694.
Xing, Y., Majda, A. J. & Grabowski, W. W. 2009 New efficient sparse space-time algorithms for superparameterization on mesoscales. Mon. Weath. Rev. 137 (12), 43074324.
Zwanzig, R. 1961 Memory effects in irreversible thermodynamics. Phys. Rev. 124 (4), 983.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Direct control of the small-scale energy balance in two-dimensional fluid dynamics

  • Jason Frank (a1), Benedict Leimkuhler (a2) and Keith W. Myerscough (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.