Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T06:20:28.569Z Has data issue: false hasContentIssue false

Direct numerical simulation of axisymmetric wakes embedded in turbulence

Published online by Cambridge University Press:  29 August 2012

Elad Rind
Affiliation:
Aeronautics, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
Ian P. Castro*
Affiliation:
Aeronautics, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
*
Email address for correspondence: i.castro@soton.ac.uk

Abstract

Direct numerical simulation has been used to study the effects of external turbulence on axisymmetric wakes. In the absence of such turbulence, the time-developing axially homogeneous wake is found to have the self-similar properties expected whereas, in the absence of the wake, the turbulence fields had properties similar to Saffman-type turbulence. Merging of the two flows was undertaken for three different levels of external turbulence (relative to the wake strength) and it is shown that the presence of the external turbulence enhances the decay rate of the wake, with the new decay rates increasing with the relative strength of the initial external turbulence. The external turbulence is found to destroy any possibility of self-similarity within the developing wake, causing a significant transformation in the latter as it gradually evolves towards the former.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amoura, Z., Roig, V., Risso, F. & Billet, A.-M. 2010 Attenuation of the wake of a sphere in an intense incident turbulence with large length scales. Phys. Fluids 22, 055105.CrossRefGoogle Scholar
2. Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15, 34963513.Google Scholar
3. Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.Google Scholar
4. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
5. Bevilaqua, P. M. & Lykoudis, P. S. 1978 Turbulence memory in self preserving wakes. J. Fluid Mech. 89, 589606.CrossRefGoogle Scholar
6. Chevray, R. 1968 The turbulent wake of a body or revolution. Trans. ASME: J. Basic Engng 275284.CrossRefGoogle Scholar
7. Eames, I., Johnson, P. B., Roig, V. & Risso, F. 2011 Effect of turbulence on the downstream velocity deficit of a rigid sphere. Phys. Fluids 23, 095103.CrossRefGoogle Scholar
8. George, W. K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structure. In Advances in Turbulence (ed. George, W.K. & Arndt, R. ), pp. 3973. Hemisphere.Google Scholar
9. Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J. 2001 Numerical modelling of initially turbulent wakes with net momentum. Phys. Fluids 13 (12), 37833802.Google Scholar
10. Hancock, P. E. & Bradshaw, P. 1989 Turbulence structure of a boundary layer beneath a turbulent free stream. J. Fluid Mech. 205, 4576.Google Scholar
11. Ishida, T., Davidson, P. A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.CrossRefGoogle Scholar
12. Johansson, P. B. V., George, W. K. & Gourlay, M. J. 2003 Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake. Phys. Fluids 15 (3), 603617.Google Scholar
13. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.Google Scholar
14. Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
15. Krogstad, P.-A. & Davidson, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.CrossRefGoogle Scholar
16. Legendre, D., Merle, A. & Magnaudet, J. 2006 Wake of a spherical bubble or a solid sphere set fixed in a turbulent environment. Phys. Fluids 18, 048102.Google Scholar
17. Moser, R. D., Rogers, M. M. & Ewing, D. W. 1998 Self-similarity of time-evolving plane wakes. J. Fluid Mech. 367, 255289.Google Scholar
18. Ostowari, C. & Page, R. H. 1989 Velocity defect of axisymmetric wakes. Exp. Fluids 7, 284285.CrossRefGoogle Scholar
19. Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
20. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1992 Numerical Recipes in FORTRAN 77: The Art of Scientific Computing. Cambridge University Press.Google Scholar
21. Redford, J. A., Castro, I. P. & Coleman, G. N. 2012 On the universality of turbulent axisymmetric wakes. J. Fluid Mech. 710, 419452.Google Scholar
22. Redford, J. A. & Coleman, G. N. 2007 Numerical study of turbulent wakes in background turbulence. 5th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-5 Conference), Munich Germany, pp. 561–566.Google Scholar
23. Rind, E. & Castro, I. P. 2012 On the effects of free stream turbulent on axisymmetric disc wakes. Exp. Fluids 53, 301318.CrossRefGoogle Scholar
24. Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Tech. Mem. 81315.Google Scholar
25. Sullivan, N. P., Mahalingam, S. & Kerr, R. 1994 Deterministic forcing of homogeneous isotropic turbulence. Phys. Fluids 6, 16121614.Google Scholar
26. Townsend, A. A. 1976 Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
27. Uberoi, M. S. & Freymuth, P. 1970 Turbulent energy balance and spectra of the axisymmetric wake. Phys. Fluids 13 (9), 22052210.Google Scholar
28. Wang, L.-P., Chen, S., Brasseur, J. G. & Wyngaard, J. C. 1996 Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J. Fluid Mech. 309, 113156.Google Scholar
29. Wu, J.-S. & Feath, G. M. 1994 Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J. 32 (3), 535541.Google Scholar
30. Wu, J.-S. & Feath, G. M. 1995 Effect of ambient turbulence intensity on sphere wakes at intermediate Reynolds numbers. AIAA J. 33 (1), 171173.CrossRefGoogle Scholar
31. Wygnanski, I., Champagne, F. & Marasli, B. 1986 On the large-scale structure in two-dimensional small-deficit turbulent wakes. J. Fluid Mech. 168, 3171.CrossRefGoogle Scholar
32. Xie, Z.-T. & Castro, I. P. 2008 Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust. 81 (3), 449470.CrossRefGoogle Scholar