Skip to main content
×
Home
    • Aa
    • Aa

Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers

  • Taraneh Sayadi (a1), Curtis W. Hamman (a1) and Parviz Moin (a1)
Abstract
Abstract

The onset and development of turbulence from controlled disturbances in compressible ( $\mathit{Ma}= 0. 2$ ), flat-plate boundary layers is studied by direct numerical simulation. We have validated the initial disturbance development, confirmed that H- and K-regime transitions were reproduced and, from these starting points, we carried these simulations beyond breakdown, past the skin-friction maximum and to higher Reynolds numbers than investigated before to evaluate how these two flow regimes converge towards turbulence and what transitional flow structures embody the statistics and mean dynamics of developed turbulence. We show that H- and K-type breakdowns both relax toward the same statistical structure typical of developed turbulence at high Reynolds number immediately after the skin-friction maximum. This threshold marks the onset of self-sustaining mechanisms of near-wall turbulence. At this point, computed power spectra exhibit a decade of Kolmogorov inertial subrange; this is further evidence of convergence to equilibrium turbulence at the late stage of transition. Here, visualization of the instantaneous flow structure shows numerous, tightly packed hairpin vortices (Adrian, Phys. Fluids, vol. 19, 2007, 041301). Strongly organized coherent hairpin structures are less perceptible farther downstream (at higher Reynolds numbers), but the flow statistics and near-wall dynamics are the same. These structurally simple hairpin-packet solutions found in the very late stages of H- and K-type transitions obey the statistical measurements of higher-Reynolds-number turbulence. Comparison with the bypass transition of Wu & Moin (Phys. Fluids, vol. 22, 2010, pp. 85–105) extends these observations to a wider class of transitional flows. In contrast to bypass transition, the (time- and spanwise-averaged) skin-friction maximum in both H- and K-type transitions overshoots the turbulent correlation. Downstream of these friction maxima, all three skin-friction profiles collapse when plotted versus the momentum-thickness Reynolds number, ${\mathit{Re}}_{\theta } $ . Mean velocities, turbulence intensities and integral parameters collapse generally beyond ${\mathit{Re}}_{\theta } = 900$ in each transition scenario. Skin-friction maxima, organized hairpin vortices and the onset of self-sustaining turbulence found in controlled H- and K-type transitions are, in many dynamically important respects, similar to development of turbulent spots seen by Park et al. (Phys. Fluids, vol. 24, 2012, 035105). A detailed statistical comparison demonstrates that each of these different transition scenarios evolve into a unique force balance characteristic of higher-Reynolds-number turbulence (Klewicki, Ebner & Wu, J. Fluid Mech., vol. 682, 2011, pp. 617–651). We postulate that these dynamics of late-stage transition as manifested by hairpin packets can serve as a reduced-order model of high-Reynolds-number turbulent boundary layers.

Copyright
Corresponding author
Email address for correspondence: moin@stanford.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. J. Adrian 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.

R. J. Adrian , C. D. Meinhart & C. D. Tomkins 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.

P. H. Alfredsson , A. V. Johansson , J. H. Haritonidis & H. Eckelmann 1988 The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids 31 (5), 10261033.

S. Bake , H. H. Fernholz & Yu. S. Kachanov 2000 Resemblance of K- and N-regimes of boundary-layer transition at late stages. Eur. J. Mech. (B/Fluids) 19 (1), 122.

S. Bake , D. G. W. Meyer & U. Rist 2002 Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and direct numerical simulation. J. Fluid Mech. 459, 217243.

S. Berlin , M. Wiegel & D. S. Henningson 1999 Numerical and experimental investigations of oblique boundary layer transition. J. Fluid Mech. 393, 2357.

P. S. Bernard , P. Collins & M. Potts 2010 Vortex filament simulation of the turbulent boundary layer. AIAA J. 48 (8), 17571771.

V. I. Borodulin , Yu. S. Kachanov & D. B. Koptsev 2002b Experimental study of resonant interactions of instability waves in self-similar boundary layer with an adverse pressure gradient: III. Broadband disturbances. J. Turbul. 3 (64), 119.

V. I. Borodulin , Yu. S. Kachanov & D. B. Koptsev 2002b Experimental study of resonant interactions of instability waves in self-similar boundary layer with an adverse pressure gradient: III. Broadband disturbances. J. Turbul. 3 (64), 119.

V. I. Borodulin , Yu. S. Kachanov & A. P. Roschektayev 2006 Turbulence production in an APG-boundary-layer transition induced by randomized perturbations. J. Turbul. 7 (8), 130.

V. I. Borodulin , Yu. S. Kachanov & A. P. Roschektayev 2011 Experimental detection of deterministic turbulence. J. Turbul. 12 (23), 134.

P. Bradshaw 1967 The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29, 625645.

H. Choi & P. Moin 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids 2 (8), 14501460.

A. D. D. Craik 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50, 393413.

D. J. C. Dennis & T. B. Nickels 2011 Experimental measurements of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.

P. Durbin & X. Wu 2006 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39 (1), 107128.

H. Fasel & U. Konzelmann 1990 Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311347.

H. F. Fasel , U. Rist & U. Konzelmann 1990 Numerical investigation of the three-dimensional development in boundary-layer transition. AIAA J. 28, 2937.

B. Ganapathisubramani , E. K. Longmire & I. Marusic 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.

W. T. Hambleton , N. Hutchins & I. Marusic 2006 Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 5364.

T. Herbert 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.

X. Huai , R. D. Joslin & U. Piomelli 1997 Large-eddy simulation of transition to turbulence in boundary layers. Theor. Comput. Fluid Dyn. 9, 149163.

N. Hutchins , K. Chauhan , I. Marusic , J. Monty & J. Klewicki 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.

R. G. Jacobs & P. A. Durbin 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.

J. Jiménez & P. Moin 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.

Yu. S. Kachanov 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.

Yu. S. Kachanov , V. V. Kozlov & V. Ya. Levchenko 1977 Nonlinear development of a wave in a boundary layer. Fluid Dyn. 12, 383390.

Yu. S. Kachanov & V. Ya. Levchenko 1984 The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer. J. Fluid Mech. 138, 209247.

K. C. Kim & R. J. Adrian 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.

J. Kim , P. Moin & R. Moser 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.

K. Kim , H. J. Sung & R. J. Adrian 2008 Effects of background noise on generating coherent packets of hairpin vortices. Phys. Fluids 20 (10), 105107.

P. S. Klebanoff , K. D. Tidstrom & L. M. Sargent 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.

A. Mani 2011 Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment. J. Comput. Phys. 231 (2), 704716.

I. Marusic 2001 On the role of large-scale structures in wall turbulence. Phys. Fluids 13 (3), 735743.

I. Marusic 2009 Unraveling turbulence near walls. J. Fluid Mech. 630, 14.

I. Marusic , D. D. Joseph & K. Mahesh 2007 Laminar and turbulent comparisons for channel flow and flow control. J. Fluid Mech. 570, 467477.

M. Matsubara & P. H. Alfredsson 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.

C. S. J. Mayer , D. A. Von Terzi & H. F. Fasel 2011 Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 542.

P. Moin & J. Kim 1985 The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441464.

P. Moin , A. Leonard & J. Kim 1986 Evolution of a curved vortex filament into a vortex ring. Phys. Fluids 29 (4), 955963.

M. V. Morkovin 1969 The many faces of transition. In Viscous Drag Reduction (ed. C. S. Wells ), pp. 131. Plenum.

S. Nagarajan , S. K. Lele & J. H. Ferziger 2003 A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191 (2), 392419.

R. Örlü & P. Schlatter 2011 On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows. Phys. Fluids 23 (2), 021704.

G. I. Park , J. M. Wallace , X. Wu & P. Moin 2012 Boundary layer turbulence in transitional and developed states. Phys. Fluids 24 (3), 035105.

A. Perry & M. Chong 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.

A. Perry & I. Marusic 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.

B. Pierce , P. Moin & T. Sayadi 2013 Application of vortex identification schemes to DNS data of a transitional boundary layer. Phys. Fluids 25 (1), 015102.

L. P. Purtell , P. S. Klebanoff & F. T. Buckley 1981 Turbulent boundary layer at low Reynolds number. Phys. Fluids 24 (5), 802811.

M. M. Rai & P. Moin 1993 Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109, 169192.

U. Rist & H. Fasel 1995 Direct numerical simulation of controlled transition in a flat-plate boundary layer. J. Fluid Mech. 298, 211248.

W. S. Saric 1986 Visualization of different transition mechanisms. Phys. Fluids: Gallery of Fluid Motion 29 (9), 2770.

W. S. Saric & A. H. Nayfeh 1975 Nonparallel stability of boundary-layer flows. Phys. Fluids 18, 945950.

T. Sayadi , C. W. Hamman & P. Moin 2012a Fundamental and subharmonic transition to turbulence in zero-pressure-gradient flat-plate boundary layers. Phys. Fluids: Gallery of Fluid Motion 24 (9), 091104.

P. Schlatter & R. Örlü 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.

P. J. Schmid & D. S. Henningson 2001 Stability and Transition in Shear Flows. Springer.

G. B. Schubauer & H. K. Skramstad 1947 Laminar boundary layer oscillations and stability of laminar flow. J. Aeronaut. Sci. 14, 6978.

P. R. Spalart 1988 Direct simulation of a turbulent boundary layer up to $R{e}_{\theta } = 1410$ . J. Fluid Mech. 187, 6198.

P. R. Spalart & J. H. Watmuff 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.

P. R. Spalart & K. Yang 1987 Numerical study of ribbon-induced transition in Blasius flow. J. Fluid Mech. 178, 345365.

A. G. Volodin & M. B. Zelman 1978 Three-wave resonance interaction of disturbances in a boundary layer. Fluid Dyn. 13 (5), 698703.

T. Wei , P. Fife , J. C. Klewicki & P. McMurtry 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.

X. Wu , R. G. Jacobs , J. C. R. Hunt & P. A. Durbin 1999 Simulation of boundary layer transition induced by periodically passing wakes. J. Fluid Mech. 398, 109153.

X. Wu & P. Moin 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.

X. Wu & P. Moin 2010 Transitional and turbulent boundary layer with heat transfer. Phys. Fluids 22 (8), 085105.

T. A. Zaki & P. A. Durbin 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.

M. B. Zelman & I. I. Maslennikova 1993 Tollmien–Schlichting-wave resonant mechanism for subharmonic-type transition. J. Fluid Mech. 252, 449478.

J. Zhou , R. J. Adrian , S. Balachandar & T. M. Kendall 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 178 *
Loading metrics...

Abstract views

Total abstract views: 450 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.