Ames, F. E.1991 Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point. Dept. Mech. Engng. Rep. HMT–44. Stanford University.
Ames, F. E.
1995
The influence of large scale high intensity turbulence on vane heat transfer. In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, V004T09A021. American Society of Mechanical Engineers.
Ames, F. E., Wang, C. & Barbot, P. A.
2002
Measurement and prediction of the influence of catalytic and dry low NOx combustor turbulence on vane surface heat transfer. In ASME Turbo Expo 2002: Power for Land, Sea, and Air, pp. 969–980. American Society of Mechanical Engineers.
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M.
et al. 2014 PETSc users manual, revision 3.5. Tech. Rep. Argonne National Laboratory (ANL).
Bhaskaran, R. & Lele, S. K.
2010
Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbul.
11, 1–15.
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M.
2002
The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech.
451, 383–410.
Chowdhury, N. & Ames, F. E.
2013
The response of high intensity turbulence in the presence of large stagnation regions. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, V03CT14A020. American Society of Mechanical Engineers.
Dimopoulos, H. G. & Hanratty, T. J.
1968
Velocity gradients at the wall for flow around a cylinder for Reynolds numbers between 60 and 360. J. Fluid Mech.
33 (2), 303–319.
Dullenkopf, K. & Mayle, R. E.
1994
The effects of incident turbulence and moving wakes on laminar heat transfer in gas turbines. Trans. ASME J. Turbomach.
116 (1), 23–28.
Dullenkopf, K. & Mayle, R. E.
1995
An account of free-stream-turbulence length scale on laminar heat transfer. Trans. ASME J. Turbomach.
117 (3), 401–406.
Dullenkopf, K., Schulz, A. & Wittig, S.1990 The effect of incident wake conditions on the mean heat transfer of an airfoil. In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, V004T09A023. American Society of Mechanical Engineers.
Eckert, E. R. G.
1952
Distribution of heat-transfer coefficients around circular cylinders in crossflow at Reynolds numbers from 20 to 500. Trans. ASME
74, 343–347.
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. C.
2012
Particle image velocimetry study of fractal-generated turbulence. J. Fluid Mech.
711, 306–336.
Hubble, D. O., Vlachos, P. P. & Diller, T. E.
2013
The role of large-scale vortical structures in transient convective heat transfer augmentation. J. Fluid Mech.
718, 89–115.
Hunt, J. C. R.
1973
A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech.
61 (4), 625–706.
Jones, W. P. & Launder, B. E.
1973
The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Intl J. Heat Mass Transfer.
16 (6), 1119–1130.
Junkhan, G. H. & Serovy, G. K.
1967
Effects of free-stream turbulence and pressure gradient on flat-plate boundary-layer velocity profiles and on heat transfer. Trans. ASME J. Heat Transfer
89 (2), 169–175.
Kestin, J., Maeder, P. F. & Wang, H. E.
1961
Influence of turbulence on the transfer of heat from plates with and without a pressure gradient. Intl J. Heat Mass Transfer
3 (2), 133–154.
Kingery, J. E. & Ames, F. E.
2016
Stagnation region heat transfer augmentation at very high turbulence levels. Trans. ASME J. Turbomach.
138 (8), 081005.
Krall, K. M. & Eckert, E. R. G.
1973
Local heat transfer around a cylinder at low Reynolds number. Trans. ASME J. Heat Transfer
95 (2), 273–275.
Laizet, S., Nedić, J. & Vassilicos, J. C.
2015
Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid. Intl J. Comput. Fluid Dyn.
29 (3–5), 286–302.
Liu, X. & Rodi, W.
1994
Surface pressure and heat transfer measurements in a turbine cascade with unsteady oncoming wakes. Exp. Fluids
17 (3), 171–178.
Lowery, G. W. & Vachon, R. I.
1975
The effect of turbulence on heat transfer from heated cylinders. Intl J. Heat Mass Transfer
18 (11), 1229–1242.
Magari, P. J. & LaGraff, L. E.
1994
Wake-induced unsteady stagnation-region heat transfer measurements. Trans. ASME J. Turbomach.
116 (1), 29–38.
Mazellier, N. & Vassilicos, J. C.
2010
Turbulence without Richardson–Kolmogorov cascade. Phys. Fluids
22 (7), 075101.
Melina, G., Bruce, P. J. K., Hewitt, G. F. & Vassilicos, J. C.
2017
Heat transfer in production and decay regions of grid-generated turbulence. Intl J. Heat Mass Transfer
109, 537–554.
Paul, I.2017 Evolution of velocity and scalar gradients in a spatially developing turbulence. PhD thesis, Imperial College, London.
Paul, I., Papadakis, G. & Vassilicos, J. C.
2017
Genesis and evolution of velocity gradients in near-field spatially developing turbulence. J. Fluid Mech.
815, 295–332.
Paul, I., Papadakis, G. & Vassilicos, J. C.
2018
Evolution of passive scalar statistics in a spatially developing turbulence. Phys. Rev. Fluids
3 (1), 014612.
Paul, I., Prakash, K. A., Vengadesan, S. & Pulletikurthi, V.
2016
Analysis and characterisation of momentum and thermal wakes of elliptic cylinders. J. Fluid Mech.
807, 303–323.
Paxson, D. E. & Mayle, R. E.
1991
Laminar boundary layer interaction with an unsteady passing wake. Trans. ASME J. Turbomach.
113 (3), 419–427.
Schlichting, H. & Gersten, K.
2016
Boundary-layer Theory. Springer.
Seoud, R. E. & Vassilicos, J. C.
2007
Dissipation and decay of fractal-generated turbulence. Phys. Fluids
19 (10), 105108.
Son, J. S. & Hanratty, T. J.
1969
Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500. J. Fluid Mech.
35 (2), 369–386.
Taveira, R. R., Diogo, J. S., Lopes, D. C. & da Silva, C. B.
2013
Lagrangian statistics across the turbulent–nonturbulent interface in a turbulent plane jet. Phys. Rev. E
88 (4), 043001.
Valente, P. C. & Vassilicos, J. C.
2011
The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech.
687, 300–340.
Van Fossen, G. J., Simoneau, R. J. & Ching, C. Y.
1995
Influence of turbulence parameters, Reynolds number, and body shape on stagnation-region heat transfer. Trans. ASME J. Heat Transfer
117 (3), 597–603.
Van Fossen, G. J. & Simoneau, R. J.
1987
A study of the relationship between free-stream turbulence and stagnation region heat transfer. Trans. ASME J. Heat Transfer
109 (1), 10–15.
Vassilicos, J. C.
2015
Dissipation in turbulent flows. Annu. Rev. Fluid Mech.
47, 95–114.
Venema, L., Von Terzi, D., Bauer, H.-J. & Rodi, W.
2011
DNS of heat transfer increase in a cylinder stagnation region due to wake-induced turbulence. Intl J. Heat Fluid Flow
32 (3), 492–498.
Venema, L., Von Terzi, D., Bauer, H.-J. & Rodi, W.
2014
Direct numerical simulation of stagnation point heat transfer affected by varying wake-induced turbulence. Trans. ASME J. Turbomach.
136 (2), 021008.
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T.
2014
Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet. J. Fluid Mech.
758, 754–785.
Wissink, J. G. & Rodi, W.
2006
Direct numerical simulation of flow and heat transfer in a turbine cascade with incoming wakes. J. Fluid Mech.
569, 209–247.
Wissink, J. G. & Rodi, W.
2009
DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations. Intl J. Heat Fluid Flow
30 (5), 930–938.
Wissink, J. G. & Rodi, W.
2011a
Direct numerical simulation of heat transfer from the stagnation region of a heated cylinder affected by an impinging wake. J. Fluid Mech.
669, 64–89.
Wissink, J. G. & Rodi, W.
2011b
Heat transfer from the stagnation area of a heated cylinder at Re
_{
D
} = 140 000 affected by free-stream turbulence. Intl J. Heat Mass Transfer
54 (11), 2535–2541.
Xiong, Z. & Lele, S. K.
2004
Distortion of upstream disturbances in a Hiemenz boundary layer. J. Fluid Mech.
519, 201–232.
Xiong, Z. & Lele, S. K.
2007
Stagnation-point flow under free-stream turbulence. J. Fluid Mech.
590, 1–33.
Yardi, N. R. & Sukhatme, S. P.
1978
Effects of turbulence intensity and integral length scale of a turbulent free stream on forced convection heat transfer from a circular cylinder in cross flow. In 6th International Heat Transfer Conference, vol. 5, pp. 347–352. Hemisphere.
Zdravkovich, M. M.
1997
Flow Around Circular Cylinders: Vol. 1: Fundamentals. Oxford University Press.
Zhou, Y., Nagata, K., Sakai, Y., Ito, Y. & Hayase, T.
2016a
Enstrophy production and dissipation in developing grid-generated turbulence. Phys. Fluids
28 (2), 025113.
Zhou, Y., Nagata, K., Sakai, Y., Ito, Y. & Hayase, T.
2016b
Spatial evolution of the helical behavior and the 2/3 power-law in single-square-grid-generated turbulence. Fluid Dyn. Res.
48 (2), 021404.
Zhou, Y., Nagata, K., Sakai, Y., Suzuki, H., Ito, Y., Terashima, O. & Hayase, T.
2014
Development of turbulence behind the single square grid. Phys. Fluids
26 (4), 045102.
Zhou, Y. & Vassilicos, J. C.
2017
Related self-similar statistics of the turbulent/non-turbulent interface and the turbulence dissipation. J. Fluid Mech.
821, 440–457.