Skip to main content

Direct numerical simulation of high aspect ratio spanwise-aligned bars

  • M. MacDonald (a1), A. Ooi (a1), R. García-Mayoral (a2), N. Hutchins (a1) and D. Chung (a1)...

We conduct minimal-channel direct numerical simulations of turbulent flow over two-dimensional rectangular bars aligned in the spanwise direction. This roughness has often been described as $d$ -type, as the roughness function $\unicode[STIX]{x0394}U^{+}$ is thought to depend only on the outer-layer length scale (pipe diameter, channel half-height or boundary layer thickness). This is in contrast to conventional engineering rough surfaces, named $k$ -type, for which $\unicode[STIX]{x0394}U^{+}$ depends on the roughness height, $k$ . The minimal-span rough-wall channel is used to circumvent the high cost of simulating high Reynolds number flows, enabling a range of bars with varying aspect ratios to be investigated. The present results show that increasing the trough-to-crest height, $k$ , of the roughness while keeping the width between roughness bars, ${\mathcal{W}}$ , fixed in viscous units, results in non- $k$ -type behaviour although this does not necessarily indicate $d$ -type behaviour. Instead, for deep surfaces with $k/{\mathcal{W}}\gtrsim 3$ , the roughness function appears to depend only on ${\mathcal{W}}$ in viscous units. In these situations, the flow no longer has any information about how deep the roughness is and instead can only ‘see’ the width of the fluid gap between the bars.

Corresponding author
Email address for correspondence:
Hide All
Ambrose, H. H. 1956 The Effect of Character of Surface Roughness on Velocity Distribution and Boundary Resistance. The University of Tennessee College of Engineering.
Böhm, M., Finnigan, J. J., Raupach, M. R. & Hughes, D. 2013 Turbulence structure within and above a canopy of bluff elements. Boundary-Layer Meteorol. 146, 393419.
Busse, A., Thakkar, M. & Sandham, N. D. 2017 Reynolds-number dependence of the near-wall flow over irregular rough surfaces. J. Fluid Mech. 810, 196224.
Castro, I. P. 2017 Are urban-canopy velocity profiles exponential? Boundary-Layer Meteorol. 164, 337351.
Castro, I. P., Xie, Z.-T., Fuka, V., Robins, A. G., Carpentieri, M., Hayden, P., Hertwig, D. & Coceal, O. 2017 Measurements and computations of flow in an urban street system. Boundary-Layer Meteorol. 162, 207230.
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2015 A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771, 743777.
Cheng, M. & Hung, K. C. 2006 Vortex structure of steady flow in a rectangular cavity. Comput. Fluids 35 (10), 10461062.
Chung, D., Chan, L., MacDonald, M., Hutchins, N. & Ooi, A. 2015 A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418431.
Coleman, S. E., Nikora, V. I., McLean, S. R. & Schlicke, E. 2007 Spatially averaged turbulent flow over square ribs. J. Engng Mech. ASCE 133 (2), 194204.
Cui, J., Patel, V. C. & Lin, C.-L. 2003 Large-eddy simulation of turbulent flow in a channel with rib roughness. Intl J. Heat Fluid Flow 24 (3), 372388.
Djenidi, L., Elavarasan, R. & Antonia, R. A. 1999 The turbulent boundary layer over transverse square cavities. J. Fluid Mech. 395, 271294.
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32 (1), 519571.
Flack, K. A. & Schultz, M. P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305.
Flack, K. A., Schultz, M. P. & Connelly, J. S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19, 095104.
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22, 071704.
García-Mayoral, R. & Jiménez, J. 2011 Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.
Ghisalberti, M. & Nepf, H. M. 2004 The limited growth of vegetated shear layers. Water Resour. Res. 40, W07502.
Ham, F. & Iaccarino, G. 2004 Energy conservation in collocated discretization schemes on unstructured meshes. In Annual Research Briefs 2004, pp. 314. Center for Turbulence Research, Stanford University/NASA Ames.
Hama, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs 62, 333358.
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.
Hunter, L. J., Johnson, G. T. & Watson, I. D. 1992 An investigation of three-dimensional characteristics of flow regimes within the urban canyon. Atmos. Environ. 26 (4), 425432.
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.
Leonardi, S., Orlandi, P. & Antonia, R. A. 2007 Properties of d- and k-type roughness in a turbulent channel flow. Phys. Fluids 19, 125101.
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.
MacDonald, M., Chan, L., Chung, D., Hutchins, N. & Ooi, A. 2016 Turbulent flow over transitionally rough surfaces with varying roughness density. J. Fluid Mech. 804, 130161.
MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & García-Mayoral, R. 2017 The minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816, 542.
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 215240.
Nagib, H. M. & Chauhan, K. A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 101518.
Nepf, H., Ghisalberti, M., White, B. & Murphy, E. 2007 Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res. 43, W04422.
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.
Nikuradse, J.1933 Laws of flow in rough pipes. English translation published 1950, NACA Tech. Mem. 1292.
Patil, D. V., Lakshmisha, K. N. & Rogg, B. 2006 Lattice Boltzmann simulation of lid-driven flow in deep cavities. Comput. Fluids 35 (10), 11161125.
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (2), 383413.
Poggi, D. & Katul, G. G. 2008 The effect of canopy roughness density on the constitutive components of the dispersive stresses. Exp. Fluids 45, 111121.
Poggi, D., Katul, G. G. & Albertson, J. D. 2004 A note on the contribution of dispersive fluxes to momentum transfer within canopies. Boundary-Layer Meteorol. 111, 615621.
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78, 351382.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.
Sadique, J., Yang, X. I. A., Meneveau, C. & Mittal, R. 2017 Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: effect of aspect ratio and arrangements. Boundary-Layer Meteorol. 163, 203224.
Saito, N., Pullin, D. I. & Inoue, M. 2012 Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow. Phys. Fluids 24, 075103.
Sams, E. W.1952 Experimental investigation of average heat-transfer and friction coefficients for air flowing in circular tubes having square-thread-type roughness. NACA Research Mem. E52D17.
Seo, J. & Mani, A. 2016 On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids 28, 025110.
Streeter, V. L. & Chu, H.1949 Fluid flow and heat transfer in artificially roughneed pipes. Final Report, Project 4918. Armour Research Foundation, Illinois.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Yang, X. I. A., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 15
Total number of PDF views: 258 *
Loading metrics...

Abstract views

Total abstract views: 438 *
Loading metrics...

* Views captured on Cambridge Core between 19th March 2018 - 21st August 2018. This data will be updated every 24 hours.