Skip to main content Accessibility help
×
Home

Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry

  • Olaf Marxen (a1), Gianluca Iaccarino (a2) and Thierry E. Magin (a1)

Abstract

The paper describes a numerical investigation of linear and nonlinear instability in high-speed boundary layers. Both a frozen gas and a finite-rate chemically reacting gas are considered. The weakly nonlinear instability in the presence of a large-amplitude two-dimensional wave is investigated for the case of fundamental resonance. Depending on the amplitude of this two-dimensional primary wave, strong growth of oblique secondary perturbations occurs for favourable relative phase differences between the two. For essentially the same primary amplitude, secondary amplification is almost identical for a reacting and a frozen gas. Therefore, chemical reactions do not directly affect the growth of secondary perturbations, but only indirectly through the change of linear instability and hence amplitude of the primary wave. When the secondary disturbances reach a sufficiently large amplitude, strongly nonlinear effects stabilize both primary and secondary perturbations.

Copyright

Corresponding author

Present address: Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK. Email address for correspondence: o.marxen@imperial.ac.uk

References

Hide All
Chang, C.-L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.
Eissler, W. & Bestek, H. 1996 Spatial numerical simulations of linear and weakly nonlinear wave instabilities in supersonic boundary layers. Theor. Comput. Fluid Dyn. 8 (3), 219235.
Fedorov, A. V. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.
Fezer, A. & Kloker, M. 2003 DNS of transition mechanisms at Mach 6.8 – flat plate versus sharp cone. In West East High Speed Flow Fields 2002 (ed. Zeitoun, D. E., Periaux, J., Desideri, J. A. & Marini, M.), pp. 434441. CIMNE.
Franko, K. J., MacCormack, R. W. & Lele, S. K.2010 Effects of chemistry modeling on hypersonic boundary layer linear stability prediction. AIAA Paper 2010-4601.
Fujii, K. & Hornung, H. G. 2003 Experimental investigation of high-enthalpy effects on attachment-line boundary-layer transition. AIAA J. 41 (7), 12821291.
Germain, P. D. & Hornung, H. G. 1997 Transition on a slender cone in hypervelocity flow. Exp. Fluids 22, 183190.
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245283.
Hornung, H. G. 2006 Hypersonic real-gas effects on transition. In IUTAM Symposium on One Hundred Years of Boundary Layer Research (ed. Meier, G. & Sreenivasan, K.), pp. 335344. Springer.
Johnson, H. B., Seipp, T. G. & Candler, G. V. 1998 Numerical study of hypersonic reacting boundary layer transition on cones. Phys. Fluids 10 (10), 26762685.
Kawai, S., Shankar, S. K. & Lele, S. K. 2010 Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229 (5), 17391762.
Mack, L. M.1969 Boundary layer stability theory. NASA Tech. Rep. JPL-900-277-REV-A; NASA-CR-131501. Jet Propulsion Laboratory.
Mack, L. M.1984 Boundary-layer linear stability theory. Tech. Rep. AGARD-R-709.
Malik, M. R. 2003 Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects. J. Spacecr. Rockets 40 (3), 332344.
Malik, M. R. & Anderson, E. C. 1991 Real gas effects on hypersonic boundary-layer stability. Phys. Fluids A 3 (5), 803821.
Marxen, O., Iaccarino, G. & Shaqfeh, E. S. G. 2010 Disturbance evolution in a Mach 4.8 boundary layer with two-dimensional roughness-induced separation and shock. J. Fluid Mech. 648, 435469.
Marxen, O., Magin, T., Iaccarino, G. & Shaqfeh, E. S. G. 2011 A high-order numerical method to study hypersonic boundary-layer instability including high-temperature gas effects. Phys. Fluids 23 (8), 084108.
Marxen, O., Magin, T., Shaqfeh, E. S. G. & Iaccarino, G. 2013 A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry. J. Comput. Phys. 255, 572589.
Mayer, C. S. J., von Terzi, D. A. & Fasel, H. F. 2011a Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 542.
Mayer, C. S. J., Wernz, S. & Fasel, H. F. 2011b Numerical investigation of the nonlinear transition regime in a Mach 2 boundary layer. J. Fluid Mech. 668, 113149.
Mironov, S. G. & Maslov, A. A. 2000 Experimental study of secondary instability in a hypersonic shock layer on a flat plate. J. Fluid Mech. 412, 259277.
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2003 A robust high-order method for large eddy simulation. J. Comput. Phys. 191, 392419.
Stuckert, G. & Reed, H. L. 1994 Linear disturbances in hypersonic, chemically reacting shock layers. AIAA J. 32 (7), 13841393.
Tumin, A., Wang, X. & Zhong, X. 2007 Direct numerical simulation and the theory of receptivity in a hypersonic boundary layer. Phys. Fluids 19 (1), 014101.
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44 (1), 527561.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed