Hostname: page-component-5b777bbd6c-2hk6m Total loading time: 0 Render date: 2025-06-24T05:28:29.413Z Has data issue: false hasContentIssue false

Direct numerical simulations of Leidenfrost drop impacting onto superheated liquid pool: an early stage study

Published online by Cambridge University Press:  13 March 2025

Shuo Zhao
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Jie Zhang*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
Chao Sun
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
*
Corresponding authors: Jie Zhang, j_zhang@xjtu.edu.cn; Ming-Jiu Ni, mjni@ucas.as.cn
Corresponding authors: Jie Zhang, j_zhang@xjtu.edu.cn; Ming-Jiu Ni, mjni@ucas.as.cn

Abstract

When a droplet impacts onto a superheated liquid pool, vapour generation and drainage within the gas cushion play a crucial role in postponing or even preventing contact between the droplet and the pool surface. Through direct numerical simulations, we closely examine the transient dynamics of vapour flow confined within the thin film, with a particular focus on the minimum thickness of this film under a range of impact conditions. Our numerical findings manifest the significant influence of evaporation on the vertical motion of the liquid–vapour interface, revealing how the minimum film thickness evolves in response to variations in impact velocity and degree of superheat. In our numerical simulations, we have identified two distinct evolution laws for the minimum film thickness, corresponding to moderate and high superheat regimes, respectively. These regimes are differentiated by the dominance of evaporation effects within the vapour film during the early falling stage. Subsequently, we establish scaling relations to characterize these regimes by carefully balancing inertial, pressure and evaporation effects within the thin vapour film. Furthermore, we observe that the vapour pressure eventually reaches equilibrium with the rapid increase in capillary pressure at the spreading front, thereby controlling the minimum thickness of the vapour layer in both moderate and high superheat regimes. We derive self-similar solutions based on this equilibrium, and the predicted minimum film thickness aligns remarkably well with our numerical results. This provides compelling evidence that evaporation alone is insufficient to prevent droplet–pool coalescence.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ajaev, V.S. & Kabov, O.A. 2021 Levitation and self-organization of droplets. Annu. Rev. Fluid Mech. 53 (1), 203225.CrossRefGoogle Scholar
Bell, J.B., Colella, P. & Glaz, H.M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85 (2), 257283.CrossRefGoogle Scholar
Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 16321637.CrossRefGoogle Scholar
Bouillant, A., Cohen, C., Clanet, C. & Quere, D. 2021 Self-excitation of leidenfrost drops and consequences on their stability. Proc. Natl Acad. Sci. USA 118 (26), e2021691118.CrossRefGoogle ScholarPubMed
Bouillant, A., Mouterde, T., Bourrianne, P., Lagarde, A., Clanet, C. & Quéré, D. 2018 Leidenfrost wheels. Nat. Phys. 14 (12), 11881192.CrossRefGoogle Scholar
Bouwhuis, W., van der Veen, R.C.A., Tran, T., Keij, D.L., Winkels, K.G., Peters, I.R., van der Meer, D., Sun, C., Snoeijer, J.H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.CrossRefGoogle ScholarPubMed
Burton, J., Sharpe, A., Van Der Veen, R., Franco, A. & Nagel, S. 2012 Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109 (7), 074301.CrossRefGoogle Scholar
Castanet, G., Chaze, W., Caballina, O., Collignon, R. & Lemoine, F. 2018 Transient evolution of the heat transfer and the vapor film thickness at the drop impact in the regime of film boiling. Phys. Fluids 30 (12), 122109.CrossRefGoogle Scholar
Celestini, F., Frisch, T. & Pomeau, Y. 2012 Take off of small Leidenfrost droplets. Phys. Rev. Lett. 109 (3), 034501.CrossRefGoogle ScholarPubMed
Chantelot, P. & Lohse, D. 2021 Drop impact on superheated surfaces: short-time dynamics and transition to contact. J. Fluid Mech. 928, 516527.CrossRefGoogle Scholar
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.CrossRefGoogle ScholarPubMed
Duchemin, L. & Josserand, C. 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23 (9), 091701.CrossRefGoogle Scholar
Gauthier, A., Diddens, C., Proville, R., Lohse, D. & van der Meer, D. 2019 Self-propulsion of inverse Leidenfrost drops on a cryogenic bath. Proc. Natl Acad. Sci. USA 116 (4), 11741179.CrossRefGoogle ScholarPubMed
Gordillo, J.M. & Riboux, G. 2022 The initial impact of drops cushioned by an air or vapour layer with applications to the dynamic Leidenfrost regime. J. Fluid Mech. 941, A10.CrossRefGoogle Scholar
Graeber, G., Regulagadda, K., Hodel, P., Kuettel, C., Landolf, D., Schutzius, T. M. & Poulikakos, D. 2021 Leidenfrost droplet trampolining. Nat. Commun. 12 (1), 1727.CrossRefGoogle ScholarPubMed
Gueyffier, D., Li, J., Nadim, A., Scardovelli, R. & Zaleski, S. 1999 Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152 (2), 423456.CrossRefGoogle Scholar
Hendrix, M.H.W., Bouwhuis, W., van der Meer, D., Lohse, D. & Snoeijer, J.H. 2016 Universal mechanism for air entrainment during liquid impact. J. Fluid Mech. 789, 708725.CrossRefGoogle Scholar
Hicks, P.D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23 (6), 062104.CrossRefGoogle Scholar
Kim, H., Truong, B., Buongiorno, J. & Hu, L.-W. 2011 On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Appl. Phys. Lett. 98 (8), 083121.CrossRefGoogle Scholar
Kim, J. 2017 Spray cooling heat transfer: the state of the art. Intl J. Heat Fluid Flow 28 (4), 753767.CrossRefGoogle Scholar
Klaseboer, E., Manica, R. & Chan, D.Y. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113 (19), 194501.CrossRefGoogle ScholarPubMed
Lee, S.-H., Harth, K., Rump, M., Kim, M., Lohse, D., Fezzaa, K. & Je, J. H. 2020 a Drop impact on hot plates: contact times, lift-off and the lamella rupture. Soft Matt. 16 (34), 79357949.CrossRefGoogle ScholarPubMed
Lee, S.-H., Lee, S.J., Lee, J.S., Fezzaa, K. & Je, J.H. 2018 Transient dynamics in drop impact on a superheated surface. Phys. Rev. Fluids 3 (12), 124308.CrossRefGoogle Scholar
Lee, S.-H., Rump, M., Harth, K., Kim, M., Lohse, D., Fezzaa, K. & Je, J. H. 2020 b Downward jetting of a dynamic Leidenfrost drop. Phy. Rev. Fluids 5 (7), 074802.CrossRefGoogle Scholar
Leidenfrost, J. G. 1756 De aquae communis nonnullis qualitatibus tractatus. Ovenius.Google Scholar
Linke, H., Alemán, B., Melling, L., Taormina, M., Francis, M., Dow-Hygelund, C., Narayanan, V., Taylor, R. & Stout, A. 2006 Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96 (15), 154502.CrossRefGoogle ScholarPubMed
Lyu, S., Mathai, V., Wang, Y., Sobac, B., Colinet, P., Lohse, D. & Sun, C. 2019 Final fate of a Leidenfrost droplet: explosion or takeoff. Sci. Adv. 5 (5), eaav8081.CrossRefGoogle ScholarPubMed
Lyu, S., Tan, H., Wakata, Y., Yang, X., Law, C.K., Lohse, D. & Sun, C. 2021 On explosive boiling of a multicomponent leidenfrost drop. Proc. Natl Acad. Sci. USA, 118 (2), e2016107118.CrossRefGoogle ScholarPubMed
Ma, X. & Burton, J.C. 2018 Self-organized oscillations of Leidenfrost drops. J. Fluid Mech. 846, 263291.CrossRefGoogle Scholar
Mani, M., Mandre, S. & Brenner, M.P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.CrossRefGoogle Scholar
Maquet, L., Sobac, B., Darbois-Texier, B., Duchesne, A., Brandenbourger, M., Rednikov, A., Colinet, P. & Dorbolo, S. 2016 Leidenfrost drops on a heated liquid pool. Phys. Rev. Fluids 1 (5), 053902.CrossRefGoogle Scholar
Mirjalili, S. & Mani, A. 2020 Transitional stages of thin air film entrapment in drop-pool impact events. J. Fluid Mech. 901, 163185.CrossRefGoogle Scholar
Mogilevskiy, E. 2020 Levitation of a nonboiling droplet over hot liquid bath. Intl J. Heat Mass Transfer 32 (1), 012114.Google Scholar
Moreira, A., Moita, A. & Panao, M. 2010 Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful? Prog. Energy Combust. Sci. 36 (5), 554580.CrossRefGoogle Scholar
Park, J. & Kim, D.E. 2020 Dynamics of liquid drops levitating on superheated surfaces. Intl J. Therm. Sci. 152, 106321.CrossRefGoogle Scholar
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 12091221.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Popinet, S. 2014 Basilisk. Available at: http://basilisk.fr (accessed:10.21.2019).Google Scholar
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.CrossRefGoogle Scholar
Qiao, L., Zeng, Z., Xie, H., Liu, H. & Zhang, L. 2019 Modeling Leidenfrost drops over heated liquid substrates. Intl J. Heat Mass Transfer 128, 12961306.CrossRefGoogle Scholar
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J.M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.CrossRefGoogle Scholar
Shirota, M., van, L., Michiel, A., Sun, C., Prosperetti, A. & Lohse, D. 2016 Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116 (6), 064501.CrossRefGoogle ScholarPubMed
Snoeijer, J.H., Brunet, P. & Eggers, J. 2009 Maximum size of drops levitated by an air cushion. Phys. Rev. E 79 (3), 036307.CrossRefGoogle Scholar
Sobac, B., Maquet, L., Duchesne, A., Machrafi, H., Rednikov, A., Dauby, P., Colinet, P. & Dorbolo, S. 2020 Self-induced flows enhance the levitation of Leidenfrost drops on liquid baths. Phys. Rev. Fluids 5 (6), 062701.CrossRefGoogle Scholar
Sobac, B., Rednikov, A., Dorbolo, S. & Colinet, P. 2014 Leidenfrost effect: accurate drop shape modeling and refined scaling laws. Phys. Rev. E 90 (5), 053011.CrossRefGoogle ScholarPubMed
Staat, H.J., Tran, T., Geerdink, B., Riboux, G., Sun, C., Gordillo, J.M. & Lohse, D. 2015 Phase diagram for droplet impact on superheated surfaces. J. Fluid Mech. 779, R3.CrossRefGoogle Scholar
Tang, X., Saha, A., Law, C.K. & Sun, C. 2016 Nonmonotonic response of drop impacting on liquid film: mechanism and scaling. Soft Matt. 12 (20), 45214529.CrossRefGoogle ScholarPubMed
Tang, X., Saha, A., Law, C.K. & Sun, C. 2018 Bouncing-to-merging transition in drop impact on liquid film: role of liquid viscosity. Langmuir 34 (8), 26542662.CrossRefGoogle ScholarPubMed
Tang, X., Saha, A., Law, C.K. & Sun, C. 2019 a Bouncing drop on liquid film: dynamics of interfacial gas layer. Phys. Fluids 31 (1), 013304.CrossRefGoogle Scholar
Tang, X., Saha, A., Sun, C. & Law, C.K. 2019 b Spreading and oscillation dynamics of drop impacting liquid film. J. Fluid Mech. 881, 859871.CrossRefGoogle Scholar
Thoroddsen, S.T., Thoraval, M.-J., Takehara, K. & Etoh, T. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.CrossRefGoogle Scholar
Tran, T., de Maleprade, H. & Sun, C., Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, 859871.CrossRefGoogle Scholar
Tran, T., Staat, H.J.J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.CrossRefGoogle ScholarPubMed
van Limbeek, M.A.J., Klein Schaarsberg, M.H., Sobac, B., Rednikov, A., Sun, C., Colinet, P. & Lohse, D. 2017 Leidenfrost drops cooling surfaces: theory and interferometric measurement. J. Fluid Mech. 827, 614639.CrossRefGoogle Scholar
van Limbeek, M.A.J., Shirota, M., Sleutel, P., Sun, C. & Prosperetti, A. 2016 Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature. Intl J. Heat Mass Transfer 97, 101109.CrossRefGoogle Scholar
van Limbeek, M.A.J., Sobac, B., Rednikov, A. & Colinet, P. 2019 Asymptotic theory for a Leidenfrost drop on a liquid pool. J. Fluid Mech. 863, 11571189.CrossRefGoogle Scholar
Villegas, L. R., Tanguy, S., Castanet, G., Caballina, O. & Lemoine, F. 2017 Direct numerical simulation of the impact of a droplet onto a hot surface above the Leidenfrost temperature. Intl J. Heat Mass Transfer 104, 10901109.CrossRefGoogle Scholar
Wagner, H. 1932 Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten. ZAMM-J. Appl. Math. Mech. 12 (4), 193215.CrossRefGoogle Scholar
Wang, L., Rong, S., Shen, S., Wang, T. & Che, Z. 2020 Interface oscillation of droplets upon impact on a heated surface in the Leidenfrost state. Intl J. Heat Mass Transfer 148, 119116.CrossRefGoogle Scholar
Weymouth, G.D. & Yue, D.K.-P. 2010 Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229 (8), 28532865.CrossRefGoogle Scholar
Yuan, W., Wei, T. & Zhang, M. 2022 Dynamical vapour pocket of an impacting Leidenfrost droplet: Evaporation and scaling relations. Intl J. Heat Fluid Flow 95, 108965.CrossRefGoogle Scholar
Zhao, S., Zhang, J. & Ni, M.-J. 2022 Boiling and evaporation model for liquid-gas flows: a sharp and conservative method based on the geometrical vof approach. J. Comput. Phys. 452, 110908.CrossRefGoogle Scholar