Skip to main content
    • Aa
    • Aa

Direct numerical simulations of roughness-induced transition in supersonic boundary layers

  • Suman Muppidi (a1) and Krishnan Mahesh (a1)

Direct numerical simulations are used to study the laminar to turbulent transition of a Mach 2.9 supersonic flat plate boundary layer flow due to distributed surface roughness. Roughness causes the near-wall fluid to slow down and generates a strong shear layer over the roughness elements. Examination of the mean wall pressure indicates that the roughness surface exerts an upward impulse on the fluid, generating counter-rotating pairs of streamwise vortices underneath the shear layer. These vortices transport near-wall low-momentum fluid away from the wall. Along the roughness region, the vortices grow stronger, longer and closer to each other, and result in periodic shedding. The vortices rise towards the shear layer as they advect downstream, and the resulting interaction causes the shear layer to break up, followed quickly by a transition to turbulence. The mean flow in the turbulent region shows a good agreement with available data for fully developed turbulent boundary layers. Simulations under varying conditions show that, where the shear is not as strong and the streamwise vortices are not as coherent, the flow remains laminar.

Corresponding author
Email address for correspondence:
Hide All
1. Acarlar M. S. & Smith C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. J. Fluid Mech. 175, 142.
2. Berry S. A., Hamilton H. H. II & Wurster K. E. 2006 Effect of computational method on discrete roughness correlations for shuttle orbiter. J. Spacecr. Rockets 43 (4), 842852.
3. Berry S. A. & Horvath T. J. 2007 Discrete roughness transition for hypersonic flight vehicles. AIAA Paper 2007-0307.
4. Berry S. A., Horvath T. J., Hollis B. R., Thompson R. A. & Hamilton H. H. II 2001 X-33 hypersonic boundary-layer transition. J. Spacecr. Rockets 38 (5), 646657.
5. Bookey P. B., Wyckham C., Smits A. J. & Martin M. P. 2005 New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA Paper 2005-309.
6. Choudhari M. & Fischer P. 2005 Roughness-induced transient growth AIAA Paper 2005-4765.
7. Choudhari M., Li F., Wu M., Chang C. L., Edwards J., Kegerise M. & King R. 2010 Laminar–turbulent transition behind discrete roughness elements in a high-speed boundary layer. AIAA Paper 2010-1575.
8. Corke T. C., Bar-Sever A. & Morkovin M. V. 1986 Experiments on transition enhancement by distributed roughness. Phys. Fluids 29 (10), 31993213.
9. Ekoto I. W., Bowersox R. D. W., Beutner T. & Goss L. 2008 Supersonic boundary layers with periodic surface roughness. AIAA. J. 46 (2), 486497.
10. Elena M., Lacharme J. & Gaviglio J. 1985 Comparison of hot-wire and laser Doppler anemometry methods in supersonic turbulent boundary layers. In Proceedings of the International Symposium on Laser Anemometry. (ed. Dybb A. & Pfund P. A. ). ASME.
11. Ergin F. G. & White E. B. 2006 Unsteady and transitional flows behind roughness elements. AIAA J. 44 (11), 25042514.
12. Federov A. 2010 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.
13. Gatski T. B. & Erlebacher G. 2002 Numerical simulation of a spatially evolving supersonic turbulent boundary layer. NASA Tech. Memo. 211934.
14. Guarini S. E., Moser R. D., Shariff K. & Wray A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid. Mech. 414, 133.
15. Jimenez J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
16. Klebanoff P. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NASA Rep. 1247.
17. Klebanoff P. S. & Tidstrom K. D. 1972 Mechanism by which a two-dimensional roughness element induces boundary-layer transition. Phys. Fluids 15 (7), 11731188.
18. Loginov M. S., Adams N. A. & Zheltovodov A. A. 2006 Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid. Mech. 565, 135169.
19. Mason P. J. & Morton B. R. 1987 Trailing vortices in the wakes of surface-mounted obstacles. J. Fluid Mech. 175, 247293.
20. Morkovin M. V., Reshotko E. & Herbert T. 1994 Transition in open flow systems: a reassessment. Bull. Am. Phys. Soc. 39, 131.
21. Park N. & Mahesh K. 2007 Numerical and modelling issues in LES of compressible turbulent flows on unstructured grids. AIAA Paper 2007-722.
22. Reda D. C 2002 Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rockets 39 (2), 161167.
23. Redford J. A., Sandham N. D. & Roberts G. T. 2010 Roughness-induced transition of compressible laminar boundary layers. In Proceedings of the Seventh IUTAM Symposium on Laminar–Turbulent Transition, Stockholm, Sweden, 2009. (ed. Schlatter P. & Henningson D. S. ). Seventh IUTAM Symposium on Laminar-Turbulent Transition, IUTAM Bookseries 18 , pp. 337342. Springer Science+Business Media B.V.
24. Reshotko E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8, 311349.
25. Reshotko E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 10671075.
26. Reshotko E. 2007 Is inline-graphic
${\mathit{Re}}_{\theta } / {M}_{e} $
a meaningful transition criterion? AIAA Paper 2007-943.
27. Reshotko E. 2008 Roughness-induced transition. Transient growth in 3-D and supersonic flow. In RTO-AVT/VKI Lectures Series, Advances in Laminar–Turbulent Transition Modelling VKI, Brussels, Belgium, June 2008.
28. Reshotko E. & Tumin A. 2004 Role of transient growth in roughness-induced transition. AIAA J. 42 (4), 766770.
29. Ringuette M. J., Bookey P. B., Wyckham W. & Smits A. J. 2009 Experimental study of a Mach 3 compression ramp interaction at inline-graphic
${\mathit{Re}}_{\theta } = 2400$
. AIAA J. 47, 373385.
30. Roberts S. K. & Yaras M. I. 2005 Boundary-layer transition affected by surface roughness and free-stream turbulence. Trans. ASME: J. Fluids Engng 127, 449457.
31. Sahoo D., Papageorge M. & Smits A. J. 2010 PIV experiments on a rough-wall hypersonic turbulent boundary layer. AIAA Paper 2010-4471.
32. Saric W. S., Reed H. L. & White E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413440.
33. Schlichting H. T. 1963 Boundary Layer Theory. McGraw-Hill.
34. Schneider S. P. 2008 Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness. J. Spacecr. Rockets 45 (6), 10901105.
35. Spalart P. R. 1998 Direct simulation of a turbulent boundary layer up to inline-graphic
${\mathit{Re}}_{\theta } = 1410$
. J. Fluid Mech. 187, 6198.
36. Stetson K. F. 1990 Comments on hypersonic boundary-layer transition. Wright Research and Development Center, WRDC-TR-90-3057.
37. Tani I. 1969 Boundary layer transition. Annu. Rev. Fluid Mech. 1, 169196.
38. Tumin A. & Reshotko E. 2003 Optimal disturbances in compressible boundary layers. AIAA J. 41 (12), 23572363.
39. Tumin A. & Reshotko E. 2004 The problem of boundary-layer flow encountering a three-dimensional hump revisited. AIAA Paper 2004-101.
40. Van Driest E. R. & Blumer C. B. 1962 Boundary layer transition at supersonic speeds – three dimensional roughness effects (spheres). J. Aerosp. Sci. 29, 909916.
41. Van Driest E. R. & McCauley W. D. 1960 Measurements of the effect of two-dimensional and three-dimensional roughness elements on boundary layer transition. J. Aero. Sci. 27, 261271.
42. Wang X. & Zhong X. 2008 Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness. Journal of Spacecr. Rockets 45 (6), 11651175.
43. White E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14 (12), 44294439.
44. Wu M. & Martin M. P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45, 879889.
45. Wu X. & Moin P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 632, 541.
46. Zheltovodov A. A., Trofimov V. M., Schulein E. & Yakovlev V. N. 1990 An experimental documentation of supersonic turbulent flows in the vicinity of forward- and backward-facing ramps. Tech. Rep. 2030. Institute of Theoretical and Applied Mechanics, USSR Academy of Sciences, Novosibirsk.
47. Zhou J., Adrian R. J., Balachandar S. & Kendall T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 62 *
Loading metrics...

Abstract views

Total abstract views: 123 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.