Skip to main content
    • Aa
    • Aa

Direct numerical simulations of roughness-induced transition in supersonic boundary layers

  • Suman Muppidi (a1) and Krishnan Mahesh (a1)

Direct numerical simulations are used to study the laminar to turbulent transition of a Mach 2.9 supersonic flat plate boundary layer flow due to distributed surface roughness. Roughness causes the near-wall fluid to slow down and generates a strong shear layer over the roughness elements. Examination of the mean wall pressure indicates that the roughness surface exerts an upward impulse on the fluid, generating counter-rotating pairs of streamwise vortices underneath the shear layer. These vortices transport near-wall low-momentum fluid away from the wall. Along the roughness region, the vortices grow stronger, longer and closer to each other, and result in periodic shedding. The vortices rise towards the shear layer as they advect downstream, and the resulting interaction causes the shear layer to break up, followed quickly by a transition to turbulence. The mean flow in the turbulent region shows a good agreement with available data for fully developed turbulent boundary layers. Simulations under varying conditions show that, where the shear is not as strong and the streamwise vortices are not as coherent, the flow remains laminar.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. S. A. Berry , H. H. Hamilton II & K. E. Wurster 2006 Effect of computational method on discrete roughness correlations for shuttle orbiter. J. Spacecr. Rockets 43 (4), 842852.

4. S. A. Berry , T. J. Horvath , B. R. Hollis , R. A. Thompson & H. H. Hamilton II 2001 X-33 hypersonic boundary-layer transition. J. Spacecr. Rockets 38 (5), 646657.

8. T. C. Corke , A. Bar-Sever & M. V. Morkovin 1986 Experiments on transition enhancement by distributed roughness. Phys. Fluids 29 (10), 31993213.

9. I. W. Ekoto , R. D. W. Bowersox , T. Beutner & L. Goss 2008 Supersonic boundary layers with periodic surface roughness. AIAA. J. 46 (2), 486497.

11. F. G. Ergin & E. B. White 2006 Unsteady and transitional flows behind roughness elements. AIAA J. 44 (11), 25042514.

12. A. Federov 2010 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.

15. J. Jimenez 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.

17. P. S. Klebanoff & K. D. Tidstrom 1972 Mechanism by which a two-dimensional roughness element induces boundary-layer transition. Phys. Fluids 15 (7), 11731188.

22. D. C Reda 2002 Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rockets 39 (2), 161167.

23. J. A. Redford , N. D. Sandham & G. T. Roberts 2010 Roughness-induced transition of compressible laminar boundary layers. In Proceedings of the Seventh IUTAM Symposium on Laminar–Turbulent Transition, Stockholm, Sweden, 2009. (ed. P. Schlatter & D. S. Henningson ). Seventh IUTAM Symposium on Laminar-Turbulent Transition, IUTAM Bookseries 18 , pp. 337342. Springer Science+Business Media B.V.

24. E. Reshotko 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8, 311349.

25. E. Reshotko 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 10671075.

28. E. Reshotko & A. Tumin 2004 Role of transient growth in roughness-induced transition. AIAA J. 42 (4), 766770.

29. M. J. Ringuette , P. B. Bookey , W. Wyckham & A. J. Smits 2009 Experimental study of a Mach 3 compression ramp interaction at ${\mathit{Re}}_{\theta } = 2400$. AIAA J. 47, 373385.

32. W. S. Saric , H. L. Reed & E. B. White 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413440.

34. S. P. Schneider 2008 Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness. J. Spacecr. Rockets 45 (6), 10901105.

37. I. Tani 1969 Boundary layer transition. Annu. Rev. Fluid Mech. 1, 169196.

38. A. Tumin & E. Reshotko 2003 Optimal disturbances in compressible boundary layers. AIAA J. 41 (12), 23572363.

40. E. R. Van Driest & C. B. Blumer 1962 Boundary layer transition at supersonic speeds – three dimensional roughness effects (spheres). J. Aerosp. Sci. 29, 909916.

41. E. R. Van Driest & W. D. McCauley 1960 Measurements of the effect of two-dimensional and three-dimensional roughness elements on boundary layer transition. J. Aero. Sci. 27, 261271.

42. X. Wang & X. Zhong 2008 Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness. Journal of Spacecr. Rockets 45 (6), 11651175.

43. E. B. White 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14 (12), 44294439.

44. M. Wu & M. P. Martin 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45, 879889.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 74 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.