Skip to main content
×
×
Home

Direct numerical simulations of supersonic turbulent channel flows of dense gases

  • L. Sciacovelli (a1) (a2), P. Cinnella (a1) and X. Gloerfelt (a1)
Abstract

The influence of dense-gas effects on compressible wall-bounded turbulence is investigated by means of direct numerical simulations of supersonic turbulent channel flows. Results are obtained for PP11, a heavy fluorocarbon representative of dense gases, the thermophysics properties of which are described by using a fifth-order virial equation of state and advanced models for the transport properties. In the dense-gas regime, the speed of sound varies non-monotonically in small perturbations and the dependency of the transport properties on the fluid density (in addition to the temperature) is no longer negligible. A parametric study is carried out by varying the bulk Mach and Reynolds numbers, and results are compared to those obtained for a perfect gas, namely air. Dense-gas flow exhibits almost negligible friction heating effects, since the high specific heat of the fluids leads to a loose coupling between thermal and kinetic fields, even at high Mach numbers. Despite negligible temperature variations across the channel, the mean viscosity tends to decrease from the channel walls to the centreline (liquid-like behaviour), due to its complex dependency on fluid density. On the other hand, strong density fluctuations are present, but due to the non-standard sound speed variation (opposite to the mean density evolution across the channel), the amplitude is maximal close to the channel wall, i.e. in the viscous sublayer instead of the buffer layer like in perfect gases. As a consequence, these fluctuations do not alter the turbulence structure significantly, and Morkovin’s hypothesis is well respected at any Mach number considered in the study. The preceding features make high Mach wall-bounded flows of dense gases similar to incompressible flows with variable properties, despite the significant fluctuations of density and speed of sound. Indeed, the semi-local scaling of Patel et al. (Phys. Fluids, vol. 27 (9), 2015, 095101) or Trettel & Larsson (Phys. Fluids, vol. 28 (2), 2016, 026102) is shown to be well adapted to compare results from existing surveys and with the well-documented incompressible limit. Additionally, for a dense gas the isothermal channel flow is also almost adiabatic, and the Van Driest transformation also performs reasonably well. The present observations open the way to the development of suitable models for dense-gas turbulent flows.

Copyright
Corresponding author
Email address for correspondence: paola.cinnella@ensam.eu
References
Hide All
Anderson, W. K. 1991 Numerical study on using sulfur hexafluoride as a wind tunnel test gas. AIAA J. 29 (12), 21792180.
Aubard, G., Gloerfelt, X. & Robinet, J.-C. 2013 Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J. 51 (10), 23952409.
Bae, J. H., Yoo, J. Y. & Choi, H. 2005 Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids 17 (10), 105104.
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.
Bogey, C. & Bailly, C. 2009 Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. J. Fluid Mech. 627, 129160.
Bogey, C., De Cacqueray, N. & Bailly, C. 2009 A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (5), 14471465.
Bogey, C., Marsden, O. & Bailly, C. 2012 Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105. J. Fluid Mech. 701, 352385.
Bradshaw, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9 (1), 3352.
Brown, B. P. & Argrow, B. M. 2000 Application of Bethe–Zel’dovich–Thompson fluids in organic Rankine cycle engines. J. Propul. Power 16 (6), 11181124.
Brun, C., Boiarciuc, M. P., Hakerborn, M. & Comte, P. 2008 Large eddy simulation of compressible channel flow – arguments in favour of universality of compressible turbulent wall bounded flows. Theor. Comput. Fluid Dyn. 22, 189212.
Bufi, E. A. & Cinnella, P. 2015 Efficient uncertainty quantification of turbulent flows through supersonic ORC nozzle blades. Energy Procedia 82, 186193.
Chang, P. A. III, Piomelli, U. & Blake, W. K. 1999 Relationship between wall pressure and velocity-field sources. Phys. Fluids 11 (11), 34343448.
Chernyshenko, S. I. & Baig, M. F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544 (1), 99131.
Chu, B.-T. & Kovasznay, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting compressible gaz. J. Fluid Mech. 3, 494514.
Chung, T. H., Ajlan, M., Lee, L. L. & Starling, K. E. 1988 Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Indust. Engng Chem. Res. 27 (4), 671679.
Chung, T. H., Lee, L. L. & Starling, K. E. 1984 Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Indust. Engng Chem. Fundamentals 23 (1), 813.
Cinnella, P. & Congedo, P. M. 2007 Inviscid and viscous aerodynamics of dense gases. J. Fluid Mech. 580, 179217.
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.
Congedo, P. M., Corre, C. & Cinnella, P. 2011 Numerical investigation of dense-gas effects in turbomachinery. Comput. Fluids 49 (1), 290301.
Cramer, M. S. 1989 Negative nonlinearity in selected fluorocarbons. Phys. Fluids 1 (11), 18941897.
Cramer, M. S. & Bahmani, F. 2014 Effect of large bulk viscosity on large-Reynolds-number flows. J. Fluid Mech. 751, 142163.
Cramer, M. S. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142 (1), 937.
Cramer, M. S. & Park, S. 1999 On the suppression of shock-induced separation in Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 393, 121.
Cramer, M. S. & Tarkenton, G. M. 1992 Transonic flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 240, 197228.
Cramer, M. S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24 (6), 066102.
Dean, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME J. Fluids Engng 100 (2), 215223.
Donzis, D. A. & Jagannathan, S. 2013 Fluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech. 733, 221244.
Duan, L., Beekman, I. & Martin, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.
Gerolymos, G. A., Sénéchal, D. & Vallet, I. 2010 Performance of very-high-order upwind schemes for DNS of compressible wall-turbulence. Intl J. Numer. Meth. Fluids 63 (7), 769810.
Gerolymos, G. A. & Vallet, I. 2014 Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow. J. Fluid Mech. 757, 701746.
Gloerfelt, X. & Berland, J. 2013 Turbulent boundary-layer noise: direct radiation at Mach number 0.5. J. Fluid Mech. 723, 318351.
Gomez, T., Flutet, V. & Sagaut, P. 2009 Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E 79 (3), 035301.
Guardone, A. & Argrow, B. M. 2005 Nonclassical gasdynamic region of selected fluorocarbons. Phys. Fluids 17 (11), 116102.
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.
Huang, P. G., Bradshaw, P. & Coakley, T. J. 1993 Skin friction and velocity profile family for compressible turbulent boundary layers. AIAA J. 31 (9), 16001604.
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.
Incropera, F. P. & DeWitt, D. P. 2007 Fundamentals of Heat and Mass Transfer, 6th edn. Wiley.
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Lagha, M., Kim, J., Eldredge, J. D. & Zhong, X. 2011 A numerical study of compressible turbulent boundary layers. Phys. Fluids 23 (1), 015106.
Laufer, J.1969 Thoughts on compressible turbulent boundary layers. NASA S.P. 216.
Lechner, R., Sesterhenn, J. & Friedrich, R. 2001 Turbulent supersonic channel flow. J. Turbul. 2 (1), 001–001.
Lee, J., Jung, S. Y., Sung, H. J. & Zaki, T. A. 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196225.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.
Li, X., Hashimoto, K., Tominaga, Y., Tanahashi, M. & Miyauchi, T. 2008 Numerical study of heat transfer mechanism in turbulent supercritical CO2 channel flow. J. Therm. Sci. Technol. 3 (1), 112123.
Martin, J. J. & Hou, Y. C. 1955 Development of an equation of state for gases. AIChE J. 1 (2), 142151.
Mathijssen, T., Gallo, M., Casati, E., Nannan, N. R., Zamfirescu, C., Guardone, A. & Colonna, P. 2015 The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids. Exp. Fluids 56 (10), 112.
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.
Monaco, J. F., Cramer, M. S. & Watson, L. T. 1997 Supersonic flows of dense gases in cascade configurations. J. Fluid Mech. 330, 3159.
Moneghan, R. J.1953 A review and assessment of various formulae for tubulent skin friction in compressible flow. Tech. Rep. Aeronautical Research Council. Current Paper 142.
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273308.
Morkovin, M. V. 1961 Effect of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A.), pp. 367380. CNRS.
Moser, R., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to re 𝜏 = 590. Phys. Fluids 11, 943945.
Neufeld, P. D., Janzen, A. R. & Aziz, R. A. 1972 Empirical equations to calculate 16 of the transport collision integrals 𝛺(l, s)∗ for the Lennard-Jones (12–6) potential. J. Chem. Phys. 57 (3), 11001102.
Nicoud, F. & Poinsot, T. 1999 DNS of a channel flow with variable properties. In Proceedings of First International Symposium on Turbulence and Shear Flow Phenomena, TSFP-1, Santa Barbara, USA, TSFP.
Patel, A., Peeters, J. W. R., Boersma, B. J. & Pecnik, R. 2015 Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095101.
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2. 25. Phys. Fluids 16 (3), 530545.
Poling, B. E., Prausnitz, J. M., O’Connell, J. P. & Reid, R. C. 2001 The Properties of Gases and Liquids, vol. 5. McGraw-Hill.
Rubesin, M. W.1990 Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. NASA Contractor Rep. 177556.
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.
Sciacovelli, L. & Cinnella, P. 2015 Numerical simulation of dense gas compressible homogeneous isotropic turbulence. In 15th European Turbulence Conference, EUROMECH/ETC15.
Sciacovelli, L., Cinnella, P., Content, C. & Grasso, F. 2016a Dense gas effects in inviscid homogeneous isotropic turbulence. J. Fluid Mech. 800 (1), 140179.
Sciacovelli, L., Cinnella, P. & Grasso, F.2016b Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. J. Fluid Mech. (submitted).
Sewall, E. A. & Tafti, D. K. 2008 A time-accurate variable property algorithm for calculating flows with large temperature variations. Comput. Fluids 37, 5163.
Sieder, E. N. & Tate, G. E. 1936 Heat transfer and pressure drop of liquids in tubes. Indust. Engng Chem. 28 (12), 14291435.
Spina, E. F., Smits, A. J. & Robinson, S. K. 1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26, 287319.
Spinelli, A., Pini, M., Dossena, V., Gaetani, P. & Casella, F. 2013 Design, simulation, and construction of a test rig for organic vapors. Trans. ASME J. Engng Gas Turbines Power 135 (4), 042304.
Tamano, S. & Morinishi, Y. 2006 Effect of different thermal wall boundary conditions on compressible turbulent channel flow at M = 1. 5. J. Fluid Mech. 548, 361373.
Teitel, M. & Antonia, R. A. 1993 Heat transfer in fully developed turbulent channel flow: comparison between experiment and direct numerical simulations. Intl J. Heat Mass Transfer 36 (6), 17011706.
Thompson, P. A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.
Van Driest, E. R. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18 (3), 145160.
Wallace, J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131158.
Wei, L. & Pollard, A. 2011 Interactions among pressure, density, vorticity and their gradients in compressible turbulent channel flows. J. Fluid Mech. 673, 118.
Zonta, F. 2013 Nusselt number and friction factor in thermally stratified turbulent channel flow under Non-Oberbeck-Boussinesq conditions. Intl J. Heat Fluid Flow 44, 489494.
Zonta, F., Marchioli, C. & Soldati, A. 2012 Modulation of turbulence in forced convection by temperature-dependent viscosity. J. Fluid Mech. 697, 150174.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed