Anderson, W. K.
1991
Numerical study on using sulfur hexafluoride as a wind tunnel test gas. AIAA J.
29 (12), 2179–2180.

Aubard, G., Gloerfelt, X. & Robinet, J.-C.
2013
Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J.
51 (10), 2395–2409.

Bae, J. H., Yoo, J. Y. & Choi, H.
2005
Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids
17 (10), 105104.

Bogey, C. & Bailly, C.
2004
A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys.
194 (1), 194–214.

Bogey, C. & Bailly, C.
2009
Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. J. Fluid Mech.
627, 129–160.

Bogey, C., De Cacqueray, N. & Bailly, C.
2009
A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys.
228 (5), 1447–1465.

Bogey, C., Marsden, O. & Bailly, C.
2012
Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105. J. Fluid Mech.
701, 352–385.

Bradshaw, P.
1977
Compressible turbulent shear layers. Annu. Rev. Fluid Mech.
9 (1), 33–52.

Brown, B. P. & Argrow, B. M.
2000
Application of Bethe–Zel’dovich–Thompson fluids in organic Rankine cycle engines. J. Propul. Power
16 (6), 1118–1124.

Brun, C., Boiarciuc, M. P., Hakerborn, M. & Comte, P.
2008
Large eddy simulation of compressible channel flow – arguments in favour of universality of compressible turbulent wall bounded flows. Theor. Comput. Fluid Dyn.
22, 189–212.

Bufi, E. A. & Cinnella, P.
2015
Efficient uncertainty quantification of turbulent flows through supersonic ORC nozzle blades. Energy Procedia
82, 186–193.

Chang, P. A. III, Piomelli, U. & Blake, W. K.
1999
Relationship between wall pressure and velocity-field sources. Phys. Fluids
11 (11), 3434–3448.

Chernyshenko, S. I. & Baig, M. F.
2005
The mechanism of streak formation in near-wall turbulence. J. Fluid Mech.
544 (1), 99–131.

Chu, B.-T. & Kovasznay, L. S. G.
1958
Non-linear interactions in a viscous heat-conducting compressible gaz. J. Fluid Mech.
3, 494–514.

Chung, T. H., Ajlan, M., Lee, L. L. & Starling, K. E.
1988
Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Indust. Engng Chem. Res.
27 (4), 671–679.

Chung, T. H., Lee, L. L. & Starling, K. E.
1984
Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Indust. Engng Chem. Fundamentals
23 (1), 8–13.

Cinnella, P. & Congedo, P. M.
2007
Inviscid and viscous aerodynamics of dense gases. J. Fluid Mech.
580, 179–217.

Coleman, G. N., Kim, J. & Moser, R. D.
1995
A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech.
305, 159–183.

Congedo, P. M., Corre, C. & Cinnella, P.
2011
Numerical investigation of dense-gas effects in turbomachinery. Comput. Fluids
49 (1), 290–301.

Cramer, M. S.
1989
Negative nonlinearity in selected fluorocarbons. Phys. Fluids
1 (11), 1894–1897.

Cramer, M. S. & Bahmani, F.
2014
Effect of large bulk viscosity on large-Reynolds-number flows. J. Fluid Mech.
751, 142–163.

Cramer, M. S. & Kluwick, A.
1984
On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech.
142 (1), 9–37.

Cramer, M. S. & Park, S.
1999
On the suppression of shock-induced separation in Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech.
393, 1–21.

Cramer, M. S. & Tarkenton, G. M.
1992
Transonic flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech.
240, 197–228.

Cramer, M. S.
2012
Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids
24 (6), 066102.

Dean, R. B.
1978
Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME J. Fluids Engng
100 (2), 215–223.

Donzis, D. A. & Jagannathan, S.
2013
Fluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech.
733, 221–244.

Duan, L., Beekman, I. & Martin, M. P.
2010
Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech.
655, 419–445.

Foysi, H., Sarkar, S. & Friedrich, R.
2004
Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech.
509, 207–216.

Fukagata, K., Iwamoto, K. & Kasagi, N.
2002
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids
14 (11), L73–L76.

Gerolymos, G. A., Sénéchal, D. & Vallet, I.
2010
Performance of very-high-order upwind schemes for DNS of compressible wall-turbulence. Intl J. Numer. Meth. Fluids
63 (7), 769–810.

Gerolymos, G. A. & Vallet, I.
2014
Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow. J. Fluid Mech.
757, 701–746.

Gloerfelt, X. & Berland, J.
2013
Turbulent boundary-layer noise: direct radiation at Mach number 0.5. J. Fluid Mech.
723, 318–351.

Gomez, T., Flutet, V. & Sagaut, P.
2009
Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E
79 (3), 035301.

Guardone, A. & Argrow, B. M.
2005
Nonclassical gasdynamic region of selected fluorocarbons. Phys. Fluids
17 (11), 116102.

Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A.
2000
Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech.
414, 1–33.

Huang, P. G., Bradshaw, P. & Coakley, T. J.
1993
Skin friction and velocity profile family for compressible turbulent boundary layers. AIAA J.
31 (9), 1600–1604.

Huang, P. G., Coleman, G. N. & Bradshaw, P.
1995
Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech.
305, 185–218.

Incropera, F. P. & DeWitt, D. P.
2007
Fundamentals of Heat and Mass Transfer, 6th edn. Wiley.

Kim, J.
1989
On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech.
205, 421–451.

Kim, J., Moin, P. & Moser, R.
1987
Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–166.

Lagha, M., Kim, J., Eldredge, J. D. & Zhong, X.
2011
A numerical study of compressible turbulent boundary layers. Phys. Fluids
23 (1), 015106.

Laufer, J.1969 Thoughts on compressible turbulent boundary layers. *NASA* S.P. 216.

Lechner, R., Sesterhenn, J. & Friedrich, R.
2001
Turbulent supersonic channel flow. J. Turbul.
2 (1), 001–001.

Lee, J., Jung, S. Y., Sung, H. J. & Zaki, T. A.
2013
Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech.
726, 196–225.

Lee, M. & Moser, R. D.
2015
Direct numerical simulation of turbulent channel flow up to *Re*
_{𝜏} ≈ 5200. J. Fluid Mech.
774, 395–415.

Li, X., Hashimoto, K., Tominaga, Y., Tanahashi, M. & Miyauchi, T.
2008
Numerical study of heat transfer mechanism in turbulent supercritical CO_{2} channel flow. J. Therm. Sci. Technol.
3 (1), 112–123.

Martin, J. J. & Hou, Y. C.
1955
Development of an equation of state for gases. AIChE J.
1 (2), 142–151.

Mathijssen, T., Gallo, M., Casati, E., Nannan, N. R., Zamfirescu, C., Guardone, A. & Colonna, P.
2015
The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids. Exp. Fluids
56 (10), 1–12.

Modesti, D. & Pirozzoli, S.
2016
Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow
59, 33–49.

Monaco, J. F., Cramer, M. S. & Watson, L. T.
1997
Supersonic flows of dense gases in cascade configurations. J. Fluid Mech.
330, 31–59.

Moneghan, R. J.1953 A review and assessment of various formulae for tubulent skin friction in compressible flow. *Tech. Rep.* Aeronautical Research Council. Current Paper 142.

Morinishi, Y., Tamano, S. & Nakabayashi, K.
2004
Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech.
502, 273–308.

Morkovin, M. V.
1961
Effect of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A.), pp. 367–380. CNRS.

Moser, R., Kim, J. & Mansour, N. N.
1999
Direct numerical simulation of turbulent channel flow up to *re*
_{𝜏} = 590. Phys. Fluids
11, 943–945.

Neufeld, P. D., Janzen, A. R. & Aziz, R. A.
1972
Empirical equations to calculate 16 of the transport collision integrals 𝛺^{(l, s)∗} for the Lennard-Jones (12–6) potential. J. Chem. Phys.
57 (3), 1100–1102.

Nicoud, F. & Poinsot, T.
1999
DNS of a channel flow with variable properties. In Proceedings of First International Symposium on Turbulence and Shear Flow Phenomena, TSFP-1, Santa Barbara, USA, TSFP.

Patel, A., Peeters, J. W. R., Boersma, B. J. & Pecnik, R.
2015
Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids
27 (9), 095101.

Pirozzoli, S. & Bernardini, M.
2011
Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech.
688, 120–168.

Pirozzoli, S., Grasso, F. & Gatski, T. B.
2004
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at *M* = 2. 25. Phys. Fluids
16 (3), 530–545.

Poling, B. E., Prausnitz, J. M., O’Connell, J. P. & Reid, R. C.
2001
The Properties of Gases and Liquids, vol. 5. McGraw-Hill.

Rubesin, M. W.1990 Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. *NASA Contractor Rep.* 177556.

Sarkar, S.
1995
The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech.
282, 163–186.

Sciacovelli, L. & Cinnella, P.
2015
Numerical simulation of dense gas compressible homogeneous isotropic turbulence. In 15th European Turbulence Conference, EUROMECH/ETC15.

Sciacovelli, L., Cinnella, P., Content, C. & Grasso, F.
2016a
Dense gas effects in inviscid homogeneous isotropic turbulence. J. Fluid Mech.
800 (1), 140–179.

Sciacovelli, L., Cinnella, P. & Grasso, F.2016*b* Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. *J. Fluid Mech.* (submitted).

Sewall, E. A. & Tafti, D. K.
2008
A time-accurate variable property algorithm for calculating flows with large temperature variations. Comput. Fluids
37, 51–63.

Sieder, E. N. & Tate, G. E.
1936
Heat transfer and pressure drop of liquids in tubes. Indust. Engng Chem.
28 (12), 1429–1435.

Spina, E. F., Smits, A. J. & Robinson, S. K.
1994
The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech.
26, 287–319.

Spinelli, A., Pini, M., Dossena, V., Gaetani, P. & Casella, F.
2013
Design, simulation, and construction of a test rig for organic vapors. Trans. ASME J. Engng Gas Turbines Power
135 (4), 042304.

Tamano, S. & Morinishi, Y.
2006
Effect of different thermal wall boundary conditions on compressible turbulent channel flow at *M* = 1. 5. J. Fluid Mech.
548, 361–373.

Teitel, M. & Antonia, R. A.
1993
Heat transfer in fully developed turbulent channel flow: comparison between experiment and direct numerical simulations. Intl J. Heat Mass Transfer
36 (6), 1701–1706.

Thompson, P. A.
1971
A fundamental derivative in gasdynamics. Phys. Fluids
14 (9), 1843–1849.

Trettel, A. & Larsson, J.
2016
Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids
28 (2), 026102.

Van Driest, E. R.
1951
Turbulent boundary layer in compressible fluids. J. Aero. Sci.
18 (3), 145–160.

Wallace, J. M.
2016
Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech.
48, 131–158.

Wei, L. & Pollard, A.
2011
Interactions among pressure, density, vorticity and their gradients in compressible turbulent channel flows. J. Fluid Mech.
673, 1–18.

Zonta, F.
2013
Nusselt number and friction factor in thermally stratified turbulent channel flow under Non-Oberbeck-Boussinesq conditions. Intl J. Heat Fluid Flow
44, 489–494.

Zonta, F., Marchioli, C. & Soldati, A.
2012
Modulation of turbulence in forced convection by temperature-dependent viscosity. J. Fluid Mech.
697, 150–174.