No CrossRef data available.
Published online by Cambridge University Press: 15 August 2025
In recent years, integrating physical constraints within deep neural networks has emerged as an effective approach for expediting direct numerical simulations in two-phase flow. This paper introduces physics-informed neural networks (PINNs) that utilise the phase-field method to model three-dimensional two-phase flows. We present a fully connected neural network architecture with residual blocks and spatial parallel training using the overlapping domain decomposition method across multiple graphics processing units to enhance the accuracy and computational efficiency of PINNs for the phase-field method (PF-PINNs). The proposed PINNs framework is applied to a bubble rising scenario in a three-dimensional infinite water tank to quantitatively assess the performance of PF-PINNs. Furthermore, the computational cost and parallel efficiency of the proposed method was evaluated, demonstrating its potential for widespread application in complex training environments.