Skip to main content
×
×
Home

Dispersion controlled by permeable surfaces: surface properties and scaling

  • Bowen Ling (a1) (a2), Alexandre M. Tartakovsky (a3) and Ilenia Battiato (a2)
Abstract

Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of the surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.

Copyright
Corresponding author
Email address for correspondence: ibattiato@mail.sdsu.edu
References
Hide All
Al-Chidiac, M., Mirbod, P., Andreopoulos, Y. & Weinbaum, S. 2009 Dynamic compaction of soft compressible porous materials: experiments on air–solid phase interaction. J. Porous Media 12 (11), 10191035.
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. 235 (1200), 6777.
Battiato, I. 2012 Self-similarity in coupled Brinkman/Navier–Stokes flows. J. Fluid Mech. 699, 94114.
Battiato, I. 2014 Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows. Eur. Phys. J. E 37 (19).
Battiato, I., Bandaru, P. & Tartakovsky, D. M. 2010 Elastic response of carbon nanotube forests to aerodynamic stresses. Phys. Rev. Lett. 105, 144504.
Battiato, I. & Rubol, S. 2014 Single-parameter model of vegetated aquatic flows. Water Resour. Res. 50 (8), 63586369.
Battiato, I. & Vollmer, J. 2012 Flow-induced shear instabilities of cohesive granulates. Phys. Rev. E 86, 031301.
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (01), 197207.
Bodin, J., Delay, F. & De Marsily, G. 2003 Solute transport in a single fracture with negligible matrix permeability. 1. Fundamental mechanisms. Hydrogeol. J. 11 (4), 418433.
Boso, F. & Battiato, I. 2013 Homogenizability conditions of multicomponent reactive transport processes. Adv. Water Resour. 62, 254265.
Bouquet, L. & Lauga, E. 2011 A smooth future? Nat. Mater. 10, 334337.
Brenner, H. 1987 Transport Processes in Porous Media. McGraw-Hill.
Cui, J., Daniel, D., Grinthal, A., Lin, K. & Aizenberg, J. 2015 Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nat. Mater. 14 (8), 790795.
Davis, A. M. J. & Lauga, E. 2010 Hydrodynamic friction of fakir-like superhydrophobic surfaces. J. Fluid Mech. 661, 402411.
Deck, C. P., Ni, C., Vecchio, K. S. & Bandaru, P. R. 2009 The response of carbon nanotube ensembles to fluid flow: applications to mechanical property measurement and diagnostics. J. Appl. Phys. 106 (7), 74304.
Dejam, M., Hassanzadeh, H. & Chen, Z. 2014 Shear dispersion in a fracture with porous walls. Adv. Water Resour. 74, 1425.
Ghisalberti, M. 2009 Obstructed shear flows: similarities across systems and scales. J. Fluid Mech. 641, 5161.
Gilroy, S. & Jones, D. L. 2000 Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 5, 5660.
Goharzadeh, A., Khalili, A. & Jørgensen, B. B. 2005 Transition layer thickness at a fluid–porous interface. Phys. Fluids 17 (5), 057102.
Gray, W. G. & Miller, C. T. 2005 Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv. Water Resour. 28 (2), 161180.
Griffiths, I. M., Howell, P. D. & Shipley, R. J. 2013 Control and optimization of solute transport in a thin porous tube. Phys. Fluids 25 (3), 033101.
Gruenberger, A., Probst, C., Heyer, A., Wiechert, W., Frunzke, J. & Kohlheyer, D. 2013 Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation. J. Vis. Exp. (82), e50560.
Horne, R. N. & Rodriguez, F. 1983 Dispersion in tracer flow in fractured geothermal systems. Geophys. Res. Lett. 10 (4), 289292.
Hornung, U. 1997 Homogenization and Porous Media. Springer.
Hou, X., Hu, Y., Grinthal, A., Khan, M. & Aizenberg, J. 2015 Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 519, 7073.
Kazezyılmaz-Alhan, C. M. 2008 Analytical solutions for contaminant transport in streams. J. Hydrol. 348 (3), 524534.
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.
Le Bars, M. & Worster, M. G. 2006 Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149173.
Li, X. M., Reinhoudt, D. & Crego-Calama, M. 2007 What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36, 13501368.
Liu, C., Shang, J., Kerisit, S., Zachara, J. M. & Zhu, W. 2013 Scale-dependent rates of uranyl surface complexation reaction in sediments. Geochim. Cosmochim. Acta 105, 326341.
Lloyd, F. E. 1942 The Carnivorous Plants. Read Books Ltd.
Marmur, A. 2004 The lotus effect: superhydrophobicity and metastability. Langmuir 20, 35173519.
Marschner, H. & Dell, B. 1994 Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159 (1), 89102.
Maruf, S. H., Rickman, M., Wang, L. IV, Mersch, J., Greenberg, A. R., Pellegrino, J. & Ding, Y. 2013a Influence of sub-micron surface patterns on the deposition of model proteins during active filtration. J. Membr. Sci. 444, 420428.
Maruf, S. H., Wang, L., Greenberg, A. R., Pellegrino, J. & Ding, Y. 2013b Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes. J. Membr. Sci. 428, 598607.
Mikelic, A., Devigne, V. & Duijn, C. J. Van 2006 Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers. SIAM J. Math. Anal. 38 (4), 12621287.
Nepf, H., Ghisalberti, M., White, B. & Murphy, E. 2007 Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res. 43 (4), W04422.
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44 (1), 123142.
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. 2001 Spatially averaged open-channel flow over rough bed. J. Hydraul. Engng.
Ogata, A. & Banks, R. B. 1961 A solution of the differential equation of longitudinal dispersion in porous media. US Geol. Surv. Prof. Pap; 411-A.
Ou, J., Perot, B. & Rothstein, J. P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16 (12), 46354643.
Papke, A. & Battiato, I. 2013 A reduced complexity model for dynamic similarity in obstructed shear flows. Geophys. Res. Lett. 40, 15.
Reichert, P. & Wanner, O. 1991 Enhanced one-dimensional modeling of transport in rivers. J. Hydraul. Engng 117 (9), 11651183.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.
Roubinet, D., Dreuzy, J.-R. & Tartakovsky, D. M. 2012 Semi-analytical solutions for solute transport and exchange in fractured porous media. Water Resour. Res. 48 (1), W01542.
Scholz, I., Bückins, M., Dolge, L., Erlinghagen, T., Weth, A., Hischen, F., Mayer, J., Hoffmann, S., Riederer, M. & Riedel, M. 2010 Slippery surfaces of pitcher plants: nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J. Expl Biol. 213, 11151125.
Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A. & Whitesides, G. M. 2002 Chaotic mixer for microchannels. Science 295, 647651.
Stroock, A. D. & Whitesides, G. M. 2003 Controlling flows in microchannels with patterned surface charge and topography. Acc. Chem. Res. 36, 597604.
Sudicky, E. A. & Frind, E. O. 1982 Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour. Res. 18 (6), 16341642.
Tang, D. H., Frind, E. O. & Sudicky, E. A. 1981 Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour. Res. 17 (3), 555564.
Taylor, G. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. 219, 186203.
Valdes-Parada, F. J., Ochoa-Tapia, J. A. & Alvarez-Ramirez, J. 2009 Validity of the permeability Carman–Kozeny equation: a volume averaging approach. Physica A 388 (6), 789798.
Weinbaum, S., Zhang, X., Han, Y., Vink, H. & Cowin, S. C. 2003 Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. 100 (13), 79887995.
Weinman, S. T. & Husson, S. M. 2016 Influence of chemical coating combined with nanopatterning on alginate fouling during nanofiltration. J. Membr. Sci. 513, 146154.
Whitaker, S. 1999 The Method of Volume Averaging. Kluwer.
Wu, Y.-S., Ye, M. & Sudicky, E. A. 2010 Fracture-flow-enhanced matrix diffusion in solute transport trhough fractured porous media. Trans. Porous Med. 81 (1), 2134.
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19, 123601.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed