Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-09-06T08:07:08.321Z Has data issue: false hasContentIssue false

Dispersion of confined microswimmers with diffuse reflection boundary condition: asymptotic and transient solutions

Published online by Cambridge University Press:  02 September 2025

Hanhan Zeng
Affiliation:
Laboratory of Systems Ecology and Sustainability Science, College of Engineering, Peking University, Beijing 100871, PR China
Weiquan Jiang
Affiliation:
National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, PR China
Mingyang Guan
Affiliation:
Laboratory of Systems Ecology and Sustainability Science, College of Engineering, Peking University, Beijing 100871, PR China
Joseph Hun-wei Lee
Affiliation:
National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, PR China
Guoqian Chen*
Affiliation:
Laboratory of Systems Ecology and Sustainability Science, College of Engineering, Peking University, Beijing 100871, PR China National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, PR China
*
Corresponding author: Guoqian Chen, gqchen@pku.edu.cn

Abstract

Dispersion of microswimmers is widespread in environmental and biomedical applications. In the category of continuum modelling, the present study investigates the dispersion of microswimmers in a confined unidirectional flow under a diffuse reflection boundary condition, instead of the specular reflection and the Robin boundary conditions prevailing in existing studies. By the moment analysis based on the Smoluchowski equation, the asymptotic and transient solutions are directly obtained, as validated against random walk simulations, to illustrate the effects of mean flow velocity, swimming velocity and gyrotaxis on the migration and distribution patterns of elongated microswimmers. Under the diffuse reflection boundary condition, microswimmers are found more likely to exhibit M-shaped low-shear trapping and even pronounced centreline aggregation, and elongated shape affects depletion at the centreline. Along the flow direction, they readily form unimodal distributions oriented downstream, resulting in prominent downstream migration. Near the centreline, the migration is almost entirely downstream, while upstream and vertical migrations are confined near the boundaries. When the mean flow velocity and swimming velocity are comparable, the system undergoes a temporal transition from M-shaped low-shear trapping to M-shaped high-shear trapping and ultimately to centreline aggregation. The downstream migration continuously strengthens over time, while the upstream first strengthens and then weakens. Moreover, the coupling between swimming-induced diffusion and convective dispersion leads to non-monotonic, fluctuating trends in both drift velocity and dispersivity over time. These results contribute to a deeper understanding of the underlying mechanisms governing the locomotion and control of natural and synthetic microswimmers.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235(1200), 6777.Google Scholar
van Baalen, C., Uspal, W.E., Popescu, M.N. & Isa, L. 2023 Transition from scattering to orbiting upon increasing the fuel concentration for an active Janus colloid moving at an obstacle–decorated interface. Soft Matter 19, 87908801.CrossRefGoogle Scholar
Barry, M.T., Rusconi, R., Guasto, J.S. & Stocker, R. 2015 Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton. J. R. Soc. Interface 12 (112), 20150791.10.1098/rsif.2015.0791CrossRefGoogle ScholarPubMed
Barton, N.G. 1983 On the method of moments for solute dispersion. J. Fluid Mech. 126, 205218.10.1017/S0022112083000117CrossRefGoogle Scholar
Bearon, R.N., Bees, M.A. & Croze, O.A. 2012 Biased swimming cells do not disperse in pipes as tracers: a population model based on microscale behaviour. Phys. Fluids 24 (12), 121902.10.1063/1.4772189CrossRefGoogle Scholar
Bearon, R.N. & Hazel, A.L. 2015 The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel. J. Fluid Mech. 771, R3.10.1017/jfm.2015.198CrossRefGoogle Scholar
Bearon, R.N., Hazel, A.L. & Thorn, G.J. 2011 The spatial distribution of gyrotactic swimming micro-organisms in laminar flow fields. J. Fluid Mech. 680, 602635.CrossRefGoogle Scholar
Bees, M.A. 2020 Advances in bioconvection. Annu. Rev. Fluid Mech. 52 (1), 449476.10.1146/annurev-fluid-010518-040558CrossRefGoogle Scholar
Bees, M.A. & Croze, O.A. 2010 Dispersion of biased swimming micro-organisms in a fluid flowing through a tube. Proc. R. Soc. A 466 (2119), 20572077.10.1098/rspa.2009.0606CrossRefGoogle Scholar
Bees, M.A. & Croze, O.A. 2014 Mathematics for streamlined biofuel production from unicellular algae. Biofuels 5 (1), 5365.10.4155/bfs.13.66CrossRefGoogle Scholar
Bello, M.S., Rezzonico, R. & Righetti, P.G. 1994 Use of Taylor–Aris dispersion for measurement of a solute diffusion coefficient in thin capillaries. Science 266 (5186), 773776.10.1126/science.266.5186.773CrossRefGoogle ScholarPubMed
Berke, A.P., Turner, L., Berg, H.C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101 (3), 038102.10.1103/PhysRevLett.101.038102CrossRefGoogle ScholarPubMed
Bianchi, S., Saglimbeni, F. & Di Leonardo, R. 2017 Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys. Rev. X 7 (1), 011010.Google Scholar
Bianchi, S., Saglimbeni, F., Frangipane, G., Dell’Arciprete, D. & Leonardo, R.D. 2019 3D dynamics of bacteria wall entrapment at a water–air interface. Soft Matt. 15 (16), 33973406.10.1039/C9SM00077ACrossRefGoogle Scholar
Brenner, H. 1967 Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape: ii. General theory. J. Colloid Interf. Sci. 23 (3), 407436.CrossRefGoogle Scholar
Brezinski, C. 1992 Biorthogonality and Its Applications to Numerical Analysis. Marcel Dekker.Google Scholar
Buchner, A.-J., Muller, K., Mehmood, J. & Tam, D. 2021 Hopping trajectories due to long-range interactions determine surface accumulation of microalgae. Proc. Natl Acad. Sci. USA 118 (20), e2102095118.10.1073/pnas.2102095118CrossRefGoogle ScholarPubMed
Chatwin, P.C. 1970 The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43 (2), 321352.10.1017/S0022112070002409CrossRefGoogle Scholar
Chen, K., Jiang, W., Guo, J., Zeng, H. & Guan, M. 2025 Manipulating alignment and dispersion of confined micro-swimmers through gradient-induced orienting fields. Phys. Fluids 37 (2), 021926.10.1063/5.0258072CrossRefGoogle Scholar
Chisti, Y. 2007 Biodiesel from microalgae. Biotechnol. Adv. 25 (3), 294306.10.1016/j.biotechadv.2007.02.001CrossRefGoogle ScholarPubMed
Cisneros, L., Dombrowski, C., Goldstein, R.E. & Kessler, J.O. 2006 Reversal of bacterial locomotion at an obstacle. Phys. Rev. E 73, 030901.10.1103/PhysRevE.73.030901CrossRefGoogle Scholar
Cisneros, L.H., Kessler, J.O., Ganguly, S. & Goldstein, R.E. 2011 Dynamics of swimming bacteria: transition to directional order at high concentration. Phys. Rev. E 83, 061907.10.1103/PhysRevE.83.061907CrossRefGoogle ScholarPubMed
Contino, M., Lushi, E., Tuval, I., Kantsler, V. & Polin, M. 2015 Microalgae scatter off solid surfaces by hydrodynamic and contact forces. Phys. Rev. Lett. 115 (25), 258102.10.1103/PhysRevLett.115.258102CrossRefGoogle ScholarPubMed
Croze, O.A., Bearon, R.N. & Bees, M.A. 2017 Gyrotactic swimmer dispersion in pipe flow: testing the theory. J. Fluid Mech. 816, 481506.10.1017/jfm.2017.90CrossRefGoogle Scholar
Croze, O.A., Sardina, G., Ahmed, M., Bees, M.A. & Brandt, L. 2013 Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. J. R. Soc. Interface 10 (81), 20121041.10.1098/rsif.2012.1041CrossRefGoogle ScholarPubMed
Dehkharghani, A., Waisbord, N., Dunkel, J. & Guasto, J.S. 2019 Bacterial scattering in microfluidic crystal flows reveals giant active Taylor–Aris dispersion. Proc. Natl Acad. Sci. USA 116 (23), 1111911124.10.1073/pnas.1819613116CrossRefGoogle ScholarPubMed
Doi, M. & Edwards, S.F. 1978 Dynamics of rod-like macromolecules in concentrated solution. Part 2. J. Chem. Soc. Farad. Trans. 2 74 (0), 918932.10.1039/f29787400918CrossRefGoogle Scholar
Doi, M. & Edwards, S.F. 1988 The Theory of Polymer Dynamics. vol. 73. Oxford University Press.Google Scholar
Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S. & Goldstein, R.E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 108 (27), 1094010945.10.1073/pnas.1019079108CrossRefGoogle ScholarPubMed
Durham, W.M., Kessler, J.O. & Stocker, R. 2009 Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323 (5917), 10671070.10.1126/science.1167334CrossRefGoogle ScholarPubMed
Durham, W.M. & Stocker, R. 2012 Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu. Rev. Mar. Sci. 4 (1), 177207.10.1146/annurev-marine-120710-100957CrossRefGoogle ScholarPubMed
Elgeti, J. & Gompper, G. 2013 Wall accumulation of self-propelled spheres. Europhys. Lett. 101 (4), 48003.10.1209/0295-5075/101/48003CrossRefGoogle Scholar
Enculescu, M. & Stark, H. 2011 Active colloidal suspensions exhibit polar order under gravity. Phys. Rev. Lett. 107 (5), 058301.10.1103/PhysRevLett.107.058301CrossRefGoogle ScholarPubMed
Ezhilan, B., Alonso-Matilla, R. & Saintillan, D. 2015 On the distribution and swim pressure of run-and-tumble particles in confinement. J. Fluid Mech. 781, R4.CrossRefGoogle Scholar
Ezhilan, B., Pahlavan, A.A. & Saintillan, D. 2012 Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria. Phys. Fluids 24 (9), 091701.10.1063/1.4752764CrossRefGoogle Scholar
Ezhilan, B. & Saintillan, D. 2015 Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482522.10.1017/jfm.2015.372CrossRefGoogle Scholar
Figueroa-Morales, N., Rivera, A., Soto, R., Lindner, A., Altshuler, E. & Clément, É. 2020 E. Coli ‘super-contaminates’ narrow ducts fostered by broad run-time distribution. Sci. Adv. 6 (11), eaay0155.10.1126/sciadv.aay0155CrossRefGoogle ScholarPubMed
Frankel, I. & Brenner, H. 1989 On the foundations of generalized Taylor dispersion theory. J. Fluid Mech. 204, 97119.10.1017/S0022112089001679CrossRefGoogle Scholar
Fung, L., Bearon, R.N. & Hwang, Y. 2020 Bifurcation and stability of downflowing gyrotactic micro-organism suspensions in a vertical pipe. J. Fluid Mech. 902, A26.10.1017/jfm.2020.614CrossRefGoogle Scholar
Fung, L., Bearon, R.N. & Hwang, Y. 2022 A local approximation model for macroscale transport of biased active Brownian particles in a flowing suspension. J. Fluid Mech. 935, A24.10.1017/jfm.2022.10CrossRefGoogle Scholar
Ghosh, P.K., Misko, V.R., Marchesoni, F. & Nori, F. 2013 Self-propelled Janus particles in a ratchet: numerical simulations. Phys. Rev. Lett. 110 (26), 268301.10.1103/PhysRevLett.110.268301CrossRefGoogle Scholar
Guan, M. & Chen, G. 2024 Streamwise dispersion of soluble matter in solvent flowing through a tube. J. Fluid Mech. 980, A33.10.1017/jfm.2024.34CrossRefGoogle Scholar
Guan, M., Jiang, W., Tao, L., Chen, G. & Lee, J.H. 2024 Migration of confined micro-swimmers subject to anisotropic diffusion. J. Fluid Mech. 985, A44.10.1017/jfm.2024.349CrossRefGoogle Scholar
Guan, M., Jiang, W., Wang, B., Zeng, L., Li, Z. & Chen, G. 2023 Pre-asymptotic dispersion of active particles through a vertical pipe: the origin of hydrodynamic focusing. J. Fluid Mech. 962, A14.10.1017/jfm.2023.273CrossRefGoogle Scholar
Hill, J., Kalkanci, O., McMurry, J.L. & Koser, H. 2007 Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98 (6), 068101.10.1103/PhysRevLett.98.068101CrossRefGoogle ScholarPubMed
Hill, N.A. & Bees, M.A. 2002 Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. Phys. Fluids 14 (8), 25982605.10.1063/1.1458003CrossRefGoogle Scholar
Hinch, E.J. & Leal, L.G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52 (4), 683712.10.1017/S002211207200271XCrossRefGoogle Scholar
yi Hou, J., tao Liu, H., ting Huang, L., biao Wu, S. & lin Zhang, Z. 2024 Recent advances in micro/nano-robots for environmental pollutant removal: mechanism, application, and prospect. Chem. Engng J. 498, 155135.10.1016/j.cej.2024.155135CrossRefGoogle Scholar
Hwang, Y. & Pedley, T.J. 2014 Bioconvection under uniform shear: linear stability analysis. J. Fluid Mech. 738, 522562.10.1017/jfm.2013.604CrossRefGoogle Scholar
Jakuszeit, T. & Croze, O.A. 2024 Role of tumbling in bacterial scattering at convex obstacles. Phys. Rev. E 109, 044405.10.1103/PhysRevE.109.044405CrossRefGoogle ScholarPubMed
Jeffery, G.B. & Filon, L.N.G. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102 (715), 161179.Google Scholar
Jiang, W. & Chen, G. 2019 Dispersion of active particles in confined unidirectional flows. J. Fluid Mech. 877, 134.10.1017/jfm.2019.562CrossRefGoogle Scholar
Jiang, W. & Chen, G. 2020 Dispersion of gyrotactic micro-organisms in pipe flows. J. Fluid Mech. 889, A18.10.1017/jfm.2020.91CrossRefGoogle Scholar
Jiang, W. & Chen, G. 2021 Transient dispersion process of active particles. J. Fluid Mech. 927, A11.10.1017/jfm.2021.747CrossRefGoogle Scholar
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R.E. 2013 Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110 (4), 11871192.10.1073/pnas.1210548110CrossRefGoogle ScholarPubMed
Kumar, A.H., Thomson, S.J., Powers, T.R. & Harris, D.M. 2021 Taylor dispersion of elongated rods. Phys. Rev. Fluids 6 (9), 094501.10.1103/PhysRevFluids.6.094501CrossRefGoogle Scholar
Latini, M. & Bernoff, A.J. 2001 Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399411.10.1017/S0022112001004906CrossRefGoogle Scholar
Lauga, E. 2020 The Fluid Dynamics of Cell Motility. Cambridge University Press.10.1017/9781316796047CrossRefGoogle Scholar
Li, G. & Tang, J.X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103 (7), 078101.10.1103/PhysRevLett.103.078101CrossRefGoogle Scholar
Lushi, E., Kantsler, V. & Goldstein, R.E. 2017 Scattering of biflagellate microswimmers from surfaces. Phys. Rev. E 96 (2), 023102.10.1103/PhysRevE.96.023102CrossRefGoogle ScholarPubMed
Manela, A. & Frankel, I. 2003 Generalized Taylor dispersion in suspensions of gyrotactic swimming micro-organisms. J. Fluid Mech. 490, 99127.10.1017/S0022112003005147CrossRefGoogle Scholar
Maretvadakethope, S., Hazel, A.L., Vasiev, B. & Bearon, R.N. 2023 The interplay between bulk flow and boundary conditions on the distribution of microswimmers in channel flow. J. Fluid Mech. 976, A13.10.1017/jfm.2023.897CrossRefGoogle Scholar
Mata, T.M., Martins, A.A. & Caetano, N.S. 2010 Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14 (1), 217232.10.1016/j.rser.2009.07.020CrossRefGoogle Scholar
Mathijssen, A.J.T.M., Shendruk, T.N., Yeomans, J.M. & Doostmohammadi, A. 2016 Upstream swimming in microbiological flows. Phys. Rev. Lett. 116 (2), 028104.10.1103/PhysRevLett.116.028104CrossRefGoogle ScholarPubMed
Medina-Sánchez, M., Magdanz, V., Guix, M., Fomin, V.M. & Schmidt, O.G. 2018 Swimming microrobots: soft, reconfigurable, and smart. Adv. Funct. Mater. 28 (25), 1707228.10.1002/adfm.201707228CrossRefGoogle Scholar
Mei, C.C., Auriault, J.-L. & Ng, C.-O. 1996 Some applications of the homogenization theory. Adv. Appl. Mech. 32, 277348.10.1016/S0065-2156(08)70078-4CrossRefGoogle Scholar
Michelin, S. 2023 Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55 (2023), 77101.10.1146/annurev-fluid-120720-012204CrossRefGoogle Scholar
Miki, K. & Clapham, D.E. 2013 Rheotaxis guides mammalian sperm. Curr. Biol. 23 (6), 443452.10.1016/j.cub.2013.02.007CrossRefGoogle ScholarPubMed
Muñoz, R. & Guieysse, B. 2006 Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 40 (15), 27992815.10.1016/j.watres.2006.06.011CrossRefGoogle ScholarPubMed
Omori, T., Kikuchi, K., Schmitz, M., Pavlovic, M., Chuang, C.-H. & Ishikawa, T. 2022 Rheotaxis and migration of an unsteady microswimmer. J. Fluid Mech. 930, A30.10.1017/jfm.2021.921CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1990 A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212, 155182.10.1017/S0022112090001914CrossRefGoogle ScholarPubMed
Peng, Z. & Brady, J.F. 2020 Upstream swimming and Taylor dispersion of active Brownian particles. Phys. Rev. Fluids 5 (7), 073102.10.1103/PhysRevFluids.5.073102CrossRefGoogle Scholar
Richerson, P., Armstrong, R. & Goldman, C.R. 1970 Contemporaneous disequilibrium, a new hypothesis to explain the ‘paradox of the plankton’*. Proc. Natl Acad. Sci. 67 (4), 17101714.CrossRefGoogle Scholar
Rothschild 1963 Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature (London) 198 (4886), 12211222.10.1038/1981221a0CrossRefGoogle Scholar
Round, F.E. 1981 The Ecology of Algae. CUP Archive.Google Scholar
Rusconi, R., Guasto, J.S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10 (3), 212217.10.1038/nphys2883CrossRefGoogle Scholar
Saintillan, D. & Shelley, M.J. 2008 Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20 (12), 123304.10.1063/1.3041776CrossRefGoogle Scholar
Si, B.R., Patel, P. & Mangal, R. 2020 Self-propelled janus colloids in shear flow. Langmuir 36 (40), 1188811898.10.1021/acs.langmuir.0c01924CrossRefGoogle ScholarPubMed
Sipos, O., Nagy, K., Di Leonardo, R. & Galajda, P. 2015 a Hydrodynamic trapping of swimming bacteria by convex walls. Phys. Rev. Lett. 114 (25), 258104.10.1103/PhysRevLett.114.258104CrossRefGoogle ScholarPubMed
Sipos, O., Nagy, K., Di Leonardo, R. & Galajda, P. 2015 b Hydrodynamic trapping of swimming bacteria by convex walls. Phys. Rev. Lett. 114, 258104.10.1103/PhysRevLett.114.258104CrossRefGoogle ScholarPubMed
Smith, R. 1985 Contaminant dispersion as viewed from a fixed position. J. Fluid Mech. 152, 217233.10.1017/S0022112085000660CrossRefGoogle Scholar
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.10.1017/jfm.2012.101CrossRefGoogle Scholar
Steinbuck, J.V., Stacey, M.T., McManus, M.A., Cheriton, O.M. & Ryan, J.P. 2009 Observations of turbulent mixing in a phytoplankton thin layer: implications for formation, maintenance, and breakdown. Limnol. Oceanogr. 54 (4), 13531368.10.4319/lo.2009.54.4.1353CrossRefGoogle Scholar
Strand, S.R., Kim, S. & Karrila, S.J. 1987 Computation of rheological properties of suspensions of rigid rods: stress growth after inception of steady shear flow. J. Non-Newtonian Fluid Mech. 24 (3), 311329.10.1016/0377-0257(87)80044-7CrossRefGoogle Scholar
Urso, M. & Pumera, M. 2022 Nano/microplastics capture and degradation by autonomous nano/microrobots: A perspective. Adv. Funct. Mater. 32 (20), 2112120.CrossRefGoogle Scholar
Vennamneni, L., Nambiar, S. & Subramanian, G. 2020 Shear-induced migration of microswimmers in pressure-driven channel flow. J. Fluid Mech. 890, A15.CrossRefGoogle Scholar
Volpe, G., Gigan, S. & Volpe, G. 2014 Simulation of the active Brownian motion of a microswimmer. Am. J. Phys. 82 (7), 659664.10.1119/1.4870398CrossRefGoogle Scholar
Wang, B., Jiang, W. & Chen, G. 2022 Gyrotactic trapping of micro-swimmers in simple shear flows: a study directly from the fundamental Smoluchowski equation. J. Fluid Mech. 939, A37.10.1017/jfm.2022.231CrossRefGoogle Scholar
Wang, B., Jiang, W. & Chen, G. 2023 Dispersion of a gyrotactic micro-organism suspension in a vertical pipe: the buoyancy–flow coupling effect. J. Fluid Mech. 962, A39.10.1017/jfm.2023.279CrossRefGoogle Scholar
Wang, B., Jiang, W., Chen, G., Tao, L. & Li, Z. 2021 Vertical distribution and longitudinal dispersion of gyrotactic microorganisms in a horizontal plane Poiseuille flow. Phys. Rev. Fluids 6 (5), 054502.10.1103/PhysRevFluids.6.054502CrossRefGoogle Scholar
Wang, B., Jiang, W., Zeng, L. & Chen, G. 2025 Buoyancy–flow coupled dispersion of active spheroids in a vertical pipe: effects of elongation and settling. J. Fluid Mech. 1007, A67.10.1017/jfm.2025.181CrossRefGoogle Scholar
Wu, Z. & Chen, G.Q. 2014 Analytical solution for scalar transport in open channel flow: slow-decaying transient effect. J. Hydrol. 519 (Part B), 19741984.10.1016/j.jhydrol.2014.09.044CrossRefGoogle Scholar
Wu, Z., Chen, Y., Mukasa, D., Pak, O.S. & Gao, W. 2020 Medical micro/nanorobots in complex media. Chem. Soc. Rev. 49, 80888112.10.1039/D0CS00309CCrossRefGoogle ScholarPubMed
Yasuda, H. 1984 Longitudinal dispersion of matter due to the shear effect of steady and oscillatory currents. J. Fluid Mech. 148, 383403.10.1017/S0022112084002391CrossRefGoogle Scholar
Zeng, L., Jiang, W. & Pedley, T.J. 2022 Sharp turns and gyrotaxis modulate surface accumulation of microorganisms. Proc. Natl Acad. Sci. 119 (42), e2206738119.10.1073/pnas.2206738119CrossRefGoogle ScholarPubMed
Zeng, L. & Pedley, T.J. 2018 Distribution of gyrotactic micro-organisms in complex three-dimensional flows. Part 1. Horizontal shear flow past a vertical circular cylinder. J. Fluid Mech. 852, 358397.10.1017/jfm.2018.494CrossRefGoogle Scholar
Zeng, L., Zhang, H.W., Wu, Y.H., Li, C.F. & Wang, P. 2019 Theoretical and numerical analysis of vertical distribution of active particles in a free-surface wetland flow. J. Hydrol. 573, 449455.10.1016/j.jhydrol.2019.03.085CrossRefGoogle Scholar