Skip to main content
×
×
Home

Displacing small particles by unsteady temperature fields

  • EHUD YARIV (a1)
Abstract

A model for particle propulsion by an instantaneous heat discharge is presented. The flow is driven by a gravity-independent transient fluid dilatation, engendered by an unsteady temperature field which corresponds to heat emission from a localized source located within the particle. We focus on the highly eccentric case, where the heat is released in proximity to the particle surface. Solution of the Stokes equations and subsequent evaluation of the resulting hydrodynamic thrust yields a nonlinear non-autonomous ordinary differential equation governing the evolution of particle position with time. This equation depends upon a single parameter which represents the relative effects of heating magnitude and initial geometry.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 63 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2018. This data will be updated every 24 hours.