Skip to main content
×
×
Home

Dissipative distinctions

  • Ian P. Castro (a1)
Abstract

There have been numerous studies concerning the possibility of self-similar scaling laws in fully developed turbulent shear flows, driven over the past half-century or so by the early seminal work of Townsend (1956, The Structure of Turbulent Shear Flow. Cambridge University Press). His and nearly all subsequent analyses depend crucially on a hypothesis about the nature of the dissipation, ${\it\epsilon}$ , of turbulence kinetic energy, $k$ . It has usually been assumed (sometimes implicitly) that this is governed by the famous Kolmogorov relation ${\it\epsilon}=C_{{\it\epsilon}}k^{3/2}/L$ , where $L$ is a length scale of the energy-containing eddies and $C_{{\it\epsilon}}$ is a constant. The paper by Dairay et al. (J. Fluid Mech. vol. 781, 2015, pp. 166–195) demonstrates, however, that, in the specific context of an axisymmetric wake, there can be regions where ${\it\epsilon}$ has a different behaviour, characterised by a $C_{{\it\epsilon}}$ that is not constant but depends on a varying local Reynolds number (despite the existence of a $-5/3$ region in the spectra). This leads to fundamentally different scaling laws for the wake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dissipative distinctions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dissipative distinctions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dissipative distinctions
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: i.castro@soton.ac.uk
References
Hide All
Antonia, R. A. & Pearson, B. R. 2000 Effect of initial conditions on the mean energy dissipation rate and the scaling exponent. Phys. Rev. E 62, 80868090.
Bevilaqua, P. M. & Lykoudis, P. S. 1978 Turbulence memory in self-preserving wakes. J. Fluid Mech. 89, 589606.
Dairay, T., Obligado, M. & Vassilicos, J. C. 2015 Non-equilibrium scaling laws in axisymmetric turbulent wakes. J. Fluid Mech. 781, 166195.
George, W. K. 1989 The self-preservation of turbulent flows and its relation to initial conditions. In Advances in Turbulence (ed. George, W. K. & Arndt, R.), pp. 3973. Hemisphere.
Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J. 2001 Numerical modelling of inititially turbulent wakes with net momentum. Phys. Fluids 13, 37823802.
Johansson, P. B. V., George, W. K. & Gourlay, M. J. 2003 Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake. Phys. Fluids 15, 603617.
Lumley, J. L. 1992 Some comments on turbulence. Phys. Fluids A 4, 201211.
Nedić, N., Vassilicos, J. C. & Ganapathisubramani, B. 2013 Drag and near wake characteristics of flat plates normal to the flow with fractal edge geometries. Phys. Rev. Lett. 111, 144503.
Redford, J. A., Castro, I. P. & Coleman, G. N. 2012 On the universality of turbulent axisymmetric wakes. J. Fluid Mech. 710, 419452.
Rigas, G., Morgans, A. S., Brackston, P. D. & Morrison, J. F. 2015 Diffusive dynamics and stochastic models of turbulent axisymmetric wakes. J. Fluid Mech. 778, R2.
Sreenivasan, K. R. 1998 An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10, 528529.
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421444.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.
Zhou, Y. & Antonia, R. A. 1995 Memory effects in a turbulent plane wake. Exp. Fluids 19, 112120.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed