Skip to main content
×
Home
    • Aa
    • Aa

Dissipative heating in convective flows

  • J. M. Hewitt (a1), D. P. Mckenzie (a1) and N. O. Weiss (a2)
Abstract

Dissipative heating is produced by irreversible processes, such as viscous or ohmic heating, in a convecting fluid; its importance depends on the ratio d/HT of the depth of the convecting region to the temperature scale height. Integrating the entropy equation for steady flow yields an upper bound to the total rate of dissipative heating in a convecting layer. For liquids there is a regime in which the ratio of dissipative heating to the convected heat flux is approximately equal to c(d/HT), where the constant c is independent of the Rayleigh number. This result is confirmed by numerical experiments using the Boussinesq approximation, which is valid only if d/HT is small. For deep layers the dissipative heating rate may be much greater than the convected heat flux. If the earth's magnetic field is maintained by a convectively driven dynamo, ohmic losses are limited to 5% of the convected flux emerging from the core. In the earth's mantle viscous heating may be important locally beneath ridges and behind island arcs.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 63 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.