Skip to main content
×
Home

Dissolution of a $\text{CO}_{2}$ spherical cap bubble adhered to a flat surface in air-saturated water

  • Pablo Peñas-López (a1), Miguel A. Parrales (a1) and Javier Rodríguez-Rodríguez (a1)
Abstract

Bubbles adhered to partially hydrophobic flat surfaces often attain a spherical cap shape with a contact angle much greater than zero. We address the fundamental problem of the diffusion-driven dissolution of a sessile spherical cap bubble (SCB) adhered to a flat smooth surface. In particular, we perform experiments on the dissolution of $\text{CO}_{2}$ bubbles (with initial radii ${\sim}1~\text{mm}$ ) immersed in air-saturated water adhered to two substrates with different levels of hydrophobicity. It is found that the contact angle dynamics plays an important role in the bubble dissolution rate. A dissolution model for a multicomponent SCB in an isothermal and uniform pressure environment is then devised. The model is based on the quasi-stationary approximation. It includes the effect of the contact angle dynamics, whose behaviour is predicted by means of a simplified model based on the results obtained from adhesion hysteresis. The presence of an impermeable substrate hinders the overall rate of mass transfer. Two approaches are considered in its determination: (a) the inclusion of a diffusion boundary layer–plate interaction model and (b) a finite-difference solution. The model solutions are compared with the experimental results, yielding fairly good agreement.

Copyright
Corresponding author
Email address for correspondence: papenasl@ing.uc3m.es
References
Hide All
Arfken G. 1970 Mathematical Methods for Scientists, 2nd edn, chap. 2, pp. 112114. Academic.
Cussler E. L. 1997 Diffusion, Mass Transfer in Fluid Systems, 2nd edn. Cambridge University Press.
Dietrich E., Kooij E. S., Zhang X., Zandvliet H. J. W. & Lohse D. 2015 Stick–jump mode in surface droplet dissolution. Langmuir 31 (16), 46964703.
Duda J. L. & Vrentas J. S. 1969 Mathematical analysis of bubble dissolution. AIChE J. 15 (3), 351356.
Duda J. L. & Vrentas J. S. 1971 Heat or mass transfer-controlled dissolution of an isolated sphere. Intl J. Heat Mass Transfer 14 (3), 395407.
Enríquez O. R., Sun C., Lohse D., Prosperetti A. & van der Meer D. 2014 The quasi-static growth of inline-graphic $\text{CO}_{2}$ bubbles. J. Fluid Mech. 741, R1.
Epstein P. S. & Plesset M. S. 1950 On the stability of gas bubbles in liquid–gas solutions. J. Chem. Phys. 18 (11), 15051509.
Eral H. B., ’t Mannetje D. J. C. M. & Oh J. M. 2013 Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291 (2), 247260.
Holocher J., Peeters F., Aeschbach-Hertig W., Kinzelbach W. & Kipfer R. 2003 Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition. Environ. Sci. Technol. 37 (7), 13371343.
Hong S.-J., Chang F.-M., Chou T.-H., Chan S. H., Sheng Y.-J. & Tsao H.-K. 2011 Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27 (11), 68906896.
Kentish S., Lee J., Davidson M. & Ashokkumar M. 2006 The dissolution of a stationary spherical bubble beneath a flat plate. Chem. Engng Sci. 61 (23), 76977705.
Lee W. T., McKechnie J. S. & Devereux M. G. 2011 Bubble nucleation in stout beers. Phys. Rev. E 83, 051609.
Liebermann L. 1957 Air bubbles in water. J. Appl. Phys. 28 (2), 205211.
Lohse D. & Zhang X. 2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. (in press).
Sander R. 2014 Compilation of Henry’s law constants, version 3.99. Atmos. Chem. Phys. Discuss. 14 (21), 2961530521.
Shim S., Wan J., Hilgenfeldt S., Panchal P. D. & Stone H. A. 2014 Dissolution without disappearing: multicomponent gas exchange for inline-graphic $\text{CO}_{2}$ bubbles in a microfluidic channel. Lab on a Chip 14, 24282436.
Snoeijer J. H. & Andreotti B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45 (1), 269292.
Stauber J. M., Wilson S. K., Duffy B. R. & Sefiane K. 2014 On the lifetimes of evaporating droplets. J. Fluid Mech. 744, R2.
Subramanian R. S. & Weinberg M. C. 1981 Asymptotic expansions for the description of gas bubble dissolution and growth. AIChE J. 27 (5), 739748.
Takemura F., Liu Q. & Yabe A. 1996 Effect of density-induced natural convection on the absorption process of single bubbles under a plate. Chem. Engng Sci. 51 (20), 45514560.
Weijs J. H. & Lohse D. 2013 Why surface nanobubbles live for hours. Phys. Rev. Lett. 110, 054501.
Weinberg M. C. & Subramanian R. S. 1980 Dissolution of multicomponent bubbles. J. Am. Ceram. Soc. 63 (9–10), 527531.
Wise D. L. & Houghton G. 1968 Effect of an impermeable wall on bubble collapse in diffusion coefficient measurements. Chem. Engng Sci. 23 (12), 15021503.
Yung C.-N., De Witt K. J., Brockwell J. L., McQuillen J. B. & Chai A.-T. 1989 A numerical study of parameters affecting gas bubble dissolution. J. Colloid Interface Sci. 127 (2), 442452.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 92 *
Loading metrics...

Abstract views

Total abstract views: 164 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.