Skip to main content

Experimental study on bubble dynamics subject to buoyancy

  • A. M. Zhang (a1), P. Cui (a1), J. Cui (a2) and Q. X. Wang (a3)

This paper is concerned with the dynamics of large bubbles subject to various strengths of buoyancy effects, which are associated with applications for underwater explosion. The bubble is produced by electric discharge in a low-pressure tank to enhance the buoyancy effects. Experiments are carried out for a bubble in an infinite field, below a free surface and above a rigid boundary. The effects of buoyancy are reflected by the dimensionless parameter ${\it\delta}=\sqrt{{\it\rho}gR_{m}/(p_{amb}-p_{v})}$ , where $R_{m}$ , $p_{amb}$ , $p_{v}$ , ${\it\rho}$ and $g$ are the maximum bubble radius, ambient pressure, saturated vapour pressure, density of water and the acceleration of gravity respectively. A systematic study of buoyancy effects is carried out for a wide range of ${\it\delta}$ from 0.034 to 0.95. A series of new phenomena and new features is observed. The bubbles recorded are transparent, and thus we are able to display and study the jet formation, development and impact on the opposite bubble surface as well as the subsequent collapsing and rebounding of the ring bubble. Qualitative analyses are carried out for the bubble migration, jet velocity and jet initiation time, etc. for different values of ${\it\delta}$ . When a bubble oscillates below a free surface or above a rigid boundary, the Bjerknes force due to the free surface (or rigid boundary) and the buoyancy are in opposite directions. Three situations are studied for each of the two configurations: (i) the Bjerknes force being dominant, (ii) the buoyancy force being dominant and (iii) the two forces being approximately balanced. For case (iii), we further consider two subcases, where both the balanced Bjerknes and buoyancy forces are weak or strong. When the Bjerknes and buoyancy forces are approximately balanced over the pulsation, some representative bubble behaviours are observed: the bubble near free surface is found to split into two parts jetting away from each other for small ${\it\delta}$ , or involutes from both top and bottom for large ${\it\delta}$ . A bubble above a rigid wall is found to be subject to contraction from the lateral part leading to bubble splitting. New criteria are established based on experimental results for neutral collapses where there is no dominant jetting along one direction, which correlate well with the criteria of Blake et al. (J. Fluid Mech., vol. 170, 1986, pp. 479–497; J. Fluid Mech., vol. 181, 1987, pp. 197–212) but agree better with the experimental and computational results.

Corresponding author
Email address for correspondence:
Hide All
Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, N. & Lauterborn, W. 2001 Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 13, 28052819.
Benjamin, T. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.
Best, J. P. & Kucera, A. 1992 A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137154.
Best, J. P., Soh, W. K. & Yu, C. F. 1996 An experimental investigation of buoyant transient cavity collapse near rigid cylindrical boundaries. Trans. ASME J. Fluids Engng 118, 195198.
Blake, J. R. & Gibson, D. C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123140.
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.
Blake, J. R., Taib, B. B. & Doherty, G. 1987 Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197212.
Boulton-Stone, J. M. & Blake, J. R. 1993 Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437466.
Brett, J. M. & Yiannakopolous, G. 2008 A study of explosive effects in close proximity to a submerged cylinder. Intl J. Impact Engng 35, 206225.
Brett, J. M., Yiannakopoulos, G. & van der Schaaf, P. J. 2000 Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion. Intl J. Impact Engng 24, 875890.
Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 8592.
Brujan, E. A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251281.
Brujan, E. A., Pearson, A. & Blake, J. R. 2005 Pulsating, buoyant bubbles close to a rigid boundary and near the null final Kelvin impulse state. Intl J. Multiphase Flow 31, 302317.
Buogo, S. & Cannelli, G. B. 2002 Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am. 111, 25942600.
Chahine, G. L. 1977 Interaction between an oscillating bubble and a free surface. Trans. ASME J. Fluids Engng 99, 709716.
Chahine, G. L.1997 Numerical and experimental study of explosion bubble crown jetting behavior. Dynaflow, Inc. Tech. Rep. 96003-1.
Chahine, G. & Bovis, A. 1980 Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface. In Cavitation and Inhomogeneities in Underwater Acoustics (ed. Lauterborn, W.), pp. 2329. Springer.
Chahine, G., Frederick, G., Lambrecht, C., Harris, G. & Mair, H.1995 Spark-generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools. In Proceedings of the 66th Shock and Vibration Symposium, vol. 2, pp. 265–277. SAVIAC, Shock & Vibration Information Analysis Center.
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.
Dadvand, A., Khoo, B. C. & Shervani-Tabar, M. T. 2009 A collapsing bubble-induced microinjector: an experimental study. Exp. Fluids 46, 419434.
Gibson, D. C. 1972 The kinetic and thermal expansion of vapor bubbles. Trans. ASME J. Fluids Engng 94, 8995.
Gibson, D. C. & Blake, J. R. 1982 The growth and collapse of bubbles near deformable surfaces. Appl. Sci. Res. 38, 215224.
Gonzalez-Avila, S. R., Klaseboer, E., Khoo, B. C. & Ohl, C. 2011 Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 682, 241260.
Harvey, S. B., Best, J. P. & Soh, W. K. 1996 Vapour Bubble Measurement Using Image Analysis. Institute of Physics Publishing.
Hooton, M. C., Blake, J. R. & Soh, W. K. 1994 Behaviour of an underwater explosion bubble near a rigid boundary: theory and experiment. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H.), pp. 421428. Springer.
Hung, C. & Hwangfu, J. 2010 Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries. J. Fluid Mech. 651, 5580.
Jayaprakash, A., Hsiao, C.-T. & Chahine, G. 2012 Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. Trans. ASME J. Fluids Engng 134, 031301.
Jin, Y. H., Shaw, S. J. & Emmony, D. C. 1996 Observations of a cavitation bubble interacting with a solid boundary as seen from below. Phys. Fluids 8, 16991701.
Kan, K. K., Stuhmiller, J. H. & Chan, P. C. 2005 Simulation of the collapse of an underwater explosion bubble under a circular plate. Shock Vib. 12, 217225.
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.
Krieger, J. R. & Chahine, G. L.2003 Dynamics and acoustic signature of non-spherical underwater explosion bubbles. In Proceedings of 74th Shock and Vibration Symposium. CD Edition.
Krieger, J. R. & Chahine, G. L. 2005 Acoustic signals of underwater explosions near surfaces. J. Acoust. Soc. Am. 118, 29612974.
Lauterborn, W. 1982 Cavitation bubble dynamics – new tools for an intricate problem. Appl. Sci. Res. 38, 165178.
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.
Lauterborn, W. & Hentschel, W. 1985 Cavitation bubble dynamics studied by high speed photography and holography: part one. Ultrasonics 23, 260268.
Lauterborn, W. & Vogel, A. 1984 Modern optical techniques in fluid mechanics. Annu. Rev. Fluid Mech. 16, 223244.
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.
Obreschkow, D., Kobel, P., Dorsaz, N., De Bosset, A., Nicollier, C. & Farhat, M. 2006 Cavitation bubble dynamics inside liquid drops in microgravity. Phys. Rev. Lett. 97, 094502.
Obreschkow, D., Tinguely, M., Dorsaz, N., Kobel, P., De Bosset, A. & Farhat, M. 2011 Universal scaling law for jets of collapsing bubbles. Phys. Rev. Lett. 107, 204501.
Ohl, C. D., Philipp, A. & Lauterborn, W. 1995 Cavitation bubble collapse studied at 20 million frames per second. Ann. Phys. 4, 2634.
Pearson, A., Cox, E., Blake, J. R. & Otto, S. R. 2004 Bubble interactions near a free surface. Engng Anal. Bound. Elem. 28, 295313.
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
Robinson, P. B., Blake, J. R., Kodama, T., Shima, A. & Tomita, Y. 2001 Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89, 82258237.
Shaw, S. J., Jin, Y. H., Gentry, T. P. & Emmony, D. C. 1999 Experimental observations of the interaction of a laser generated cavitation bubble with a flexible membrane. Phys. Fluids 11, 24372439.
Shaw, S. J., Jin, Y. H., Schiffers, W. P. & Emmony, D. C. 1996 The interaction of a laser-generated cavity in water with a solid surface. J. Acoust. Soc. Am. 99, 28112824.
Shima, A. & Nakajima, K. 1977 Collapse of a non-hemispherical bubble attached to a solid wall. J. Fluid Mech. 80, 369391.
Shima, A., Takayama, K. & Tomita, Y. 1983 Mechanism of impact pressure generation from spark-generated bubble collapse near a wall. AAIA J. 21, 5559.
Shima, A., Tomita, Y., Gibson, D. C. & Blake, J. R. 1989 The growth and collapse of cavitation bubbles near composite surfaces. J. Fluid Mech. 203, 199214.
Snay, H. G.1962a Underwater explosion phenomena: the parameters of migrating bubbles. NAVORD Report 4135.
Snay, H. G.1962b Charts for the parameters of migrating explosion bubbles. NOLTR Report 62–184.
Tomita, Y. & Kodama, T. 2003 Interaction of laser-induced cavitation bubbles with composite surfaces. J. Appl. Phys. 94, 28092816.
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.
Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.
Turangan, C. K., Ong, G. P., Klaseboer, E. & Khoo, B. C. 2006 Experimental and numerical study of transient bubble–elastic membrane interaction. J. Appl. Phys. 100, 054910.
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.
Wang, Q. X. 1998 The evolution of a gas bubble near an inclined wall. J. Theor. Comput. Fluid Dyn. 12, 2951.
Wang, Q. X. 2004 Numerical simulation of violent bubble motion. Phys. Fluids 16, 16101619.
Wang, Q. X. 2013 Underwater explosion bubble dynamics in a compressible liquid. Phys. Fluids 25, 072104.
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996a Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25, 607628.
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996b Strong interaction between a buoyancy bubble and a free surface. Theor. Comput. Fluid Dyn. 8, 7388.
Yang, Y. X., Wang, Q. X. & Tan, S. K. 2013 Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason. Sonochem. 20, 10981103.
Zhang, A. M. & Liu, Y. L. 2015 Improved three-dimensional bubble dynamics model based on boundary element method. J. Comput. Phys. 294, 208223.
Zhang, A. M., Wang, S. P., Huang, C. & Wang, B 2013 Influences of initial and boundary conditions on underwater explosion bubble dynamics. Eur. J. Mech. (B/Fluids) 42, 6991.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 16
Total number of PDF views: 292 *
Loading metrics...

Abstract views

Total abstract views: 591 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st June 2018. This data will be updated every 24 hours.