Skip to main content
×
Home
    • Aa
    • Aa

Highly focused supersonic microjets: numerical simulations

  • Ivo R. Peters (a1), Yoshiyuki Tagawa (a1), Nikolai Oudalov (a1), Chao Sun (a1), Andrea Prosperetti (a1) (a2), Detlef Lohse (a1) and Devaraj van der Meer (a1)...
Abstract
Abstract

By focusing a laser pulse inside a capillary partially filled with liquid, a vapour bubble is created that emits a pressure wave. This pressure wave travels through the liquid and creates a fast, focused axisymmetric microjet when it is reflected at the meniscus. We numerically investigate the formation of this microjet using axisymmetric boundary integral simulations, where we model the pressure wave as a pressure pulse applied on the bubble. We find a good agreement between the simulations and experimental results in terms of the time evolution of the jet and on all parameters that can be compared directly. We present a simple analytical model that accurately predicts the velocity of the jet after the pressure pulse and its maximum velocity.

Copyright
Corresponding author
Email address for correspondence: irpeters@uchicago.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. E. Bell & J. A. Landt 1967 Laser-induced high-pressure shock waves in water. Appl. Phys. Lett. 10, 4648.

R. Bergmann , E. de Jong , J. B. Choimet , D. van der Meer & D. Lohse 2008 The origin of the tubular jet. J. Fluid Mech. 600, 1943.

R. Bergmann , D. van der Meer , M. Stijnman , M. Sandtke , A. Prosperetti & D. Lohse 2006 Giant bubble pinch-off. Phys. Rev. Lett. 96, 154505.

F. E. C. Culick 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 1128.

L. Duchemin , S. Popinet , C. Josserand & S. Zaleski 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 30003008.

J. Eggers & E. Villermaux 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.

M. P. Felix & A. T. Ellis 1971 Laser-induced liquid breakdown – a step-by-step account. Appl. Phys. Lett. 19, 484486.

S. Gekle & J. M. Gordillo 2011 Compressible air flow through a collapsing liquid cavity. Intl J. Numer. Meth. Fluids 67, 14561469.

S. Gekle , J. M. Gordillo , D. van der Meer & D. Lohse 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502.

J. E. Hogrefe , N. L. Peffley , C. L. Goodridge , W. T. Shi , H. G. E. Hentschel & D. P. Lathrop 1998 Power-law singularities in gravity–capillary waves. Physica D 123, 183205.

E. Lorenceau , D. Quéré , J.-Y. Ollitrault & C. Clanet 2002 Gravitational oscillations of a liquid column in a pipe. Phys. Fluids 14, 1985.

E. Ory , H. Yuan , A. Prosperetti , S. Popinet & S. Zaleski 2000 Growth and collapse of a vapour bubble in a narrow tube. Phys. Fluids 12, 12681277.

G. I. Taylor 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.

O. V. Voinov 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 120 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd March 2017. This data will be updated every 24 hours.