Skip to main content
    • Aa
    • Aa

Inherently unstable internal gravity waves due to resonant harmonic generation

  • Yong Liang (a1), Ahmad Zareei (a2) and Mohammad-Reza Alam (a1) (a2)

Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are a countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, the nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not occur in a linearly stratified fluid if a simplified boundary condition, such as a rigid lid or a linearized boundary condition, is employed. Harmonic-generation resonance presented here provides a mechanism for the transfer of internal wave energy to the higher-frequency part of the spectrum hence affecting, potentially significantly, the evolution of the internal waves spectrum.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M.-R. Alam 2012 A new triad resonance between co-propagating surface and interfacial waves. J. Fluid Mech. 691, 267278.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2009a Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part 1. Perturbation analysis. J. Fluid Mech. 624, 191224.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2009b Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part 2. Numerical simulation. J. Fluid Mech. 624, 225253.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2010 Oblique sub-and super-harmonic Bragg resonance of surface waves by bottom ripples. J. Fluid Mech. 643, 437447.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2011 Resonant-wave signature of an oscillating and translating disturbance in a two-layer density stratified fluid. J. Fluid Mech. 675, 477494.

M.-R. Alam  & C. C. Mei 2007 Attenuation of long interfacial waves over a randomly rough seabed. J. Fluid Mech. 587, 7396.

M. H. Alford , T. Peacock , J. A. MacKinnon , J. D. Nash , M. C. Buijsman , L. R. Centuroni , S.-Y. Chao , M.-H. Chang , D. M. Farmer , O. B. Fringer 2015 The formation and fate of internal waves in the south china sea. Nature 521 (7550), 6569.

P. W. Boyd 2007 Biogeochemistry: iron findings. Nature 446 (7139), 989991.

O. Bühler  & M. Holmes-Cerfon 2011 Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271293.

R. E. Davis  & A. Acrivos 1967 The stability of oscillatory internal waves. J. Fluid Mech. 30 (04), 723736.

R. Ferrari  & C. Wunsch 2008 Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41 (1), 253282.

O. B. Fringer , M. Gerritsen  & R. L. Street 2006 An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model. 14 (3–4), 139173.

C. Garrett 2003 Oceanography: mixing with latitude. Nature 422 (6931), 477.

T. Gerkema , C. Staquet  & P. Bouruet-Aubertot 2006 Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett. 33 (8), L08604.

G. P. Harris 1986 Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall.

K. Hasselmann 1967 A criterion for nonlinear wave stability. J. Fluid Mech. 30 (04), 737739.

C.-H. Jiang  & P. S. Marcus 2009 Selection rules for the nonlinear interaction of internal gravity waves. Phys. Rev. Lett. 102 (12), 124502.

D. Kang  & O. Fringer 2010 On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr. 40 (11), 25392545.

D. Kang  & O. Fringer 2012 Energetics of barotropic and baroclinic tides in the monterey bay area. J. Phys. Oceanogr. 42 (2), 272290.

J. A. MacKinnon  & K. B. Winters 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9. Geophys. Res. Lett. 32 (15), L15605.

S. Martin , W. Simmons  & C. Wunsch 1972 The excitation of resonant triads by single internal waves. J. Fluid Mech. 53, 1744.

C. H. McComas  & F. P. Bretherton 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82 (9), 13971412.

A. D. McEwan 1971 Degeneration of resonantly-excited standing internal gravity waves. J. Fluid Mech. 50 (03), 431448.

P. Muller 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24 (3), 493536.

H. Scolan , E. Ermanyuk  & T. Dauxois 2013 Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110 (23), 234501.

C. Staquet  & J. Sommeria 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.

B. R. Sutherland 2016 Excitation of superharmonics by internal modes in non-uniformly stratified fluid. J. Fluid Mech. 793, 335352.

A. Tabaei , T. R. Akylas  & K. G. Lamb 2005 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.

S. A. Thorpe 1966 On wave interactions in a stratified fluid. J. Fluid Mech. 24, 737751.

S. A. Thorpe 1968 On the shape of progressive internal waves. Phil. Trans. R. Soc. Lond. A 263 (1145), 563614.

R. K. Walter , C. B. Woodson , R. S. Arthur , O. B. Fringer  & S. G. Monismith 2012 Nearshore internal bores and turbulent mixing in southern monterey bay. J. Geophys. Res. 117 (C07017), 113.

S. Wunsch 2015 Nonlinear harmonic generation by diurnal tides. Dyn. Atmos. Oceans 71, 9197.

H. P. Zhang , B. King  & H. L. Swinney 2008 Resonant generation of internal waves on a model continental slope. Phys. Rev. Lett. 100 (24), 244504.

Z. Zhang , O. B. Fringer  & S. R. Ramp 2011 Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res. 116, C05022 126.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 134 *
Loading metrics...

Abstract views

Total abstract views: 292 *
Loading metrics...

* Views captured on Cambridge Core between 13th December 2016 - 19th August 2017. This data will be updated every 24 hours.