Skip to main content

Inherently unstable internal gravity waves due to resonant harmonic generation

  • Yong Liang (a1), Ahmad Zareei (a2) and Mohammad-Reza Alam (a1) (a2)

Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are a countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, the nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not occur in a linearly stratified fluid if a simplified boundary condition, such as a rigid lid or a linearized boundary condition, is employed. Harmonic-generation resonance presented here provides a mechanism for the transfer of internal wave energy to the higher-frequency part of the spectrum hence affecting, potentially significantly, the evolution of the internal waves spectrum.

Corresponding author
Email address for correspondence:
Hide All
Alam, M.-R. 2012 A new triad resonance between co-propagating surface and interfacial waves. J. Fluid Mech. 691, 267278.
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009a Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part 1. Perturbation analysis. J. Fluid Mech. 624, 191224.
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009b Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part 2. Numerical simulation. J. Fluid Mech. 624, 225253.
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2010 Oblique sub-and super-harmonic Bragg resonance of surface waves by bottom ripples. J. Fluid Mech. 643, 437447.
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2011 Resonant-wave signature of an oscillating and translating disturbance in a two-layer density stratified fluid. J. Fluid Mech. 675, 477494.
Alam, M.-R. & Mei, C. C. 2007 Attenuation of long interfacial waves over a randomly rough seabed. J. Fluid Mech. 587, 7396.
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., Fringer, O. B. et al. 2015 The formation and fate of internal waves in the south china sea. Nature 521 (7550), 6569.
Boyd, P. W. 2007 Biogeochemistry: iron findings. Nature 446 (7139), 989991.
Bühler, O. & Holmes-Cerfon, M. 2011 Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271293.
Couston, L.-A., Liang, Y. & Alam, M.-R.2016 Oblique chain resonance of internal waves by three-dimensional seabed corrugations. Preprint, arXiv:1604.07308.
Davis, R. E. & Acrivos, A. 1967 The stability of oscillatory internal waves. J. Fluid Mech. 30 (04), 723736.
Ferrari, R. & Wunsch, C. 2008 Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41 (1), 253282.
Fringer, O. B., Gerritsen, M. & Street, R. L. 2006 An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model. 14 (3–4), 139173.
Garrett, C. 2003 Oceanography: mixing with latitude. Nature 422 (6931), 477.
Gerkema, T., Staquet, C. & Bouruet-Aubertot, P. 2006 Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett. 33 (8), L08604.
Harris, G. P. 1986 Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall.
Hasselmann, K. 1967 A criterion for nonlinear wave stability. J. Fluid Mech. 30 (04), 737739.
Jiang, C.-H. & Marcus, P. S. 2009 Selection rules for the nonlinear interaction of internal gravity waves. Phys. Rev. Lett. 102 (12), 124502.
Kang, D. & Fringer, O. 2010 On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr. 40 (11), 25392545.
Kang, D. & Fringer, O. 2012 Energetics of barotropic and baroclinic tides in the monterey bay area. J. Phys. Oceanogr. 42 (2), 272290.
Karimpour, F., Zareei, A. & Alam, M.-R.2016 Sensitivity of internal wave energy distribution over seabed corrugations to adjacent seabed features. Preprint, arXiv:1604.02641.
MacKinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9. Geophys. Res. Lett. 32 (15), L15605.
Martin, S., Simmons, W. & Wunsch, C. 1972 The excitation of resonant triads by single internal waves. J. Fluid Mech. 53, 1744.
McComas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82 (9), 13971412.
McEwan, A. D. 1971 Degeneration of resonantly-excited standing internal gravity waves. J. Fluid Mech. 50 (03), 431448.
Muller, P. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24 (3), 493536.
Scolan, H., Ermanyuk, E. & Dauxois, T. 2013 Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110 (23), 234501.
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.
Sutherland, B. R. 2016 Excitation of superharmonics by internal modes in non-uniformly stratified fluid. J. Fluid Mech. 793, 335352.
Tabaei, A., Akylas, T. R. & Lamb, K. G. 2005 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.
Thorpe, S. A. 1966 On wave interactions in a stratified fluid. J. Fluid Mech. 24, 737751.
Thorpe, S. A. 1968 On the shape of progressive internal waves. Phil. Trans. R. Soc. Lond. A 263 (1145), 563614.
Walter, R. K., Woodson, C. B., Arthur, R. S., Fringer, O. B. & Monismith, S. G. 2012 Nearshore internal bores and turbulent mixing in southern monterey bay. J. Geophys. Res. 117 (C07017), 113.
Wang, B., Giddings, S. N., Fringer, O. B., Gross, E. S., Fong, D. A. & Monismith, S. G. 2011 Modeling and understanding turbulent mixing in a macrotidal salt wedge estuary. J. Geophys. Res. 116 (C02036), 123.
Wunsch, S. 2015 Nonlinear harmonic generation by diurnal tides. Dyn. Atmos. Oceans 71, 9197.
Zhang, H. P., King, B. & Swinney, H. L. 2008 Resonant generation of internal waves on a model continental slope. Phys. Rev. Lett. 100 (24), 244504.
Zhang, Z., Fringer, O. B. & Ramp, S. R. 2011 Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res. 116, C05022 126.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed