Skip to main content
×
Home
    • Aa
    • Aa

Model order reduction using sparse coding exemplified for the lid-driven cavity

  • Rohit Deshmukh (a1), Jack J. McNamara (a1), Zongxian Liang (a1), J. Zico Kolter (a2) and Abhijit Gogulapati (a1)...
Abstract

Basis identification is a critical step in the construction of accurate reduced-order models using Galerkin projection. This is particularly challenging in unsteady flow fields due to the presence of multi-scale phenomena that cannot be ignored and may not be captured using a small set of modes extracted using the ubiquitous proper orthogonal decomposition. This study focuses on this issue by exploring an approach known as sparse coding for the basis identification problem. Compared with proper orthogonal decomposition, which seeks to truncate the basis spanning an observed data set into a small set of dominant modes, sparse coding is used to identify a compact representation that spans all scales of the observed data. As such, the inherently multi-scale bases may improve reduced-order modelling of unsteady flow fields. The approach is examined for a canonical problem of an incompressible flow inside a two-dimensional lid-driven cavity. The results demonstrate that Galerkin reduction of the governing equations using sparse modes yields a significantly improved predictive model of the fluid dynamics.

Copyright
Corresponding author
Email address for correspondence: mcnamara.190@osu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Abdi  & L. J. Williams 2010 Principal component analysis. Wiley Interdisciplinary Rev.: Comput. Stat. 2 (4), 433459.

D. Amsallem  & C. Farhat 2012 Stabilization of projection-based reduced-order models. Intl J. Numer. Meth. Engng 91 (4), 358377.

D. Amsallem , M. J. Zahr  & C. Farhat 2012 Nonlinear model order reduction based on local reduced-order bases. Intl J. Numer. Meth. Engng 92 (10), 891916.

M. J. Balajewicz , E. H. Dowell  & B. R. Noack 2013 Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285308.

J. S. Bendat  & A. G. Piersol 2010 Random Data: Analysis and Measurement Procedures, 4th edn. John Wiley & Sons.

G. Berkooz , P. Holmes  & J. L. Lumley 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.

J. Friedman , T. Hastie  & R. Tibshirani 2008 Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 (3), 432441.

J. Friedman , T. Hastie  & R. Tibshirani 2010 Regularization paths for generalized linear models via coordinate descent. J. Stat. Software 33 (1), 122.

P. Holmes , J. L. Lumley , G. Berkooz  & C. W. Rowley 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.

M. Ilak , S. Bagheri , L. Brandt , C. W. Rowley  & D. S. Henningson 2010 Model reduction of the nonlinear complex Ginzburg–Landau equation. SIAM J. Appl. Dyn. Syst. 9 (4), 12841302.

M. Ilak  & C. W. Rowley 2008 Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20 (3), 034103.

M. R. Jovanović , P. J. Schmid  & J. W. Nichols 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.

I. Kalashnikova , W. B. van Bloemen , S. Arunajatesan  & M. Barone 2014 Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment. Comput. Meth. Appl. Mech. Engng 272, 251270.

K. Kreutz-Delgado , J. F. Murray , B. D. Rao , K. Engan , T. Lee  & T. J. Sejnowski 2003 Dictionary learning algorithms for sparse representation. Neural Comput. 15 (2), 349396.

C. Leblond , C. Allery  & C. Inard 2011 An optimal projection method for the reduced-order modeling of incompressible flows. Comput. Meth. Appl. Mech. Engng 200 (33), 25072527.

D. J. Lucia , P. S. Beran  & W. A. Silva 2004 Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40 (1), 51117.

Z. Ma , S. Ahuja  & C. W. Rowley 2010 Reduced-order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn. 25 (1–4), 233247.

R. Mittal , H. Dong , M. Bozkurttas , F. M. Najjar , A. Vargas  & A. von Loebbecke 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (10), 48254852.

B. R. Noack , K. Afanasiev , M. Morzynski , G. Tadmor  & F. Thiele 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.

B. R. Noack  & H. Eckelmann 1994 A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids 6 (1), 124143.

B. R. Noack , P. Papas  & P. A. Monkewitz 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.

B. A. Olshausen  & D. J. Field 1996 Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 (6583), 607609.

B. A. Olshausen  & D. J. Field 2004 Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14 (4), 481487.

S. B. Pope 2009 Turbulent Flows, 6th edn. Cambridge University Press.

C. W. Rowley 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (03), 9971013.

L. Sirovich 1987 Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Maths 45, 561571.

F. Terragni , E. Valero  & J. Vega 2011 Local POD plus Galerkin projection in the unsteady lid-driven cavity problem. SIAM J. Sci. Comput. 33 (6), 35383561.

P. Welch 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.

J. Yang , K. Yu  & T. Huang 2010 Efficient highly over-complete sparse coding using a mixture model. In Computer Vision–ECCV 2010, pp. 113126. Springer.

K. Zhou , J. C. Doyle  & K. Glover 1996 Robust and Optimal Control, 1st edn. Prentice Hall.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 204 *
Loading metrics...

Abstract views

Total abstract views: 507 *
Loading metrics...

* Views captured on Cambridge Core between 27th October 2016 - 17th August 2017. This data will be updated every 24 hours.