Skip to main content Accessibility help

Model order reduction using sparse coding exemplified for the lid-driven cavity

  • Rohit Deshmukh (a1), Jack J. McNamara (a1), Zongxian Liang (a1), J. Zico Kolter (a2) and Abhijit Gogulapati (a1)...


Basis identification is a critical step in the construction of accurate reduced-order models using Galerkin projection. This is particularly challenging in unsteady flow fields due to the presence of multi-scale phenomena that cannot be ignored and may not be captured using a small set of modes extracted using the ubiquitous proper orthogonal decomposition. This study focuses on this issue by exploring an approach known as sparse coding for the basis identification problem. Compared with proper orthogonal decomposition, which seeks to truncate the basis spanning an observed data set into a small set of dominant modes, sparse coding is used to identify a compact representation that spans all scales of the observed data. As such, the inherently multi-scale bases may improve reduced-order modelling of unsteady flow fields. The approach is examined for a canonical problem of an incompressible flow inside a two-dimensional lid-driven cavity. The results demonstrate that Galerkin reduction of the governing equations using sparse modes yields a significantly improved predictive model of the fluid dynamics.


Corresponding author

Email address for correspondence:


Hide All
Abdi, H. & Williams, L. J. 2010 Principal component analysis. Wiley Interdisciplinary Rev.: Comput. Stat. 2 (4), 433459.
Amsallem, D. & Farhat, C. 2012 Stabilization of projection-based reduced-order models. Intl J. Numer. Meth. Engng 91 (4), 358377.
Amsallem, D., Zahr, M. J. & Farhat, C. 2012 Nonlinear model order reduction based on local reduced-order bases. Intl J. Numer. Meth. Engng 92 (10), 891916.
Balajewicz, M. J., Dowell, E. H. & Noack, B. R. 2013 Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285308.
Bendat, J. S. & Piersol, A. G. 2010 Random Data: Analysis and Measurement Procedures, 4th edn. John Wiley & Sons.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.
Chatterjee, A. 2000 An introduction to the proper orthogonal decomposition. Current Sci. 78 (7), 808817.
Engan, K., Aase, S. O. & Hakon, H. J. 1999 Method of optimal directions for frame design. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 24432446. IEEE.
Friedman, J., Hastie, T. & Tibshirani, R. 2008 Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 (3), 432441.
Friedman, J., Hastie, T. & Tibshirani, R. 2010 Regularization paths for generalized linear models via coordinate descent. J. Stat. Software 33 (1), 122.
Grosse, R., Raina, R., Kwong, H. & Ng, A. Y.2012 Shift-invariance sparse coding for audio classification. arXiv:1206.5241.
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.
Ilak, M., Bagheri, S., Brandt, L., Rowley, C. W. & Henningson, D. S. 2010 Model reduction of the nonlinear complex Ginzburg–Landau equation. SIAM J. Appl. Dyn. Syst. 9 (4), 12841302.
Ilak, M. & Rowley, C. W. 2008 Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20 (3), 034103.
Jovanović, M. R., Schmid, P. J. & Nichols, J. W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.
Kalashnikova, I., van Bloemen, W. B., Arunajatesan, S. & Barone, M. 2014 Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment. Comput. Meth. Appl. Mech. Engng 272, 251270.
Kolter, J. Z., Batra, S. & Ng, A. Y. 2010 Energy disaggregation via discriminative sparse coding. In Advances in Neural Information Processing Systems, NIPS, pp. 11531161.
Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T. & Sejnowski, T. J. 2003 Dictionary learning algorithms for sparse representation. Neural Comput. 15 (2), 349396.
Leblond, C., Allery, C. & Inard, C. 2011 An optimal projection method for the reduced-order modeling of incompressible flows. Comput. Meth. Appl. Mech. Engng 200 (33), 25072527.
Lee, H., Battle, A., Raina, R. & Ng, A. Y. 2006 Efficient sparse coding algorithms. In Advances in Neural Information Processing Systems, NIPS, pp. 801808.
Lucia, D. J., Beran, P. S. & Silva, W. A. 2004 Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40 (1), 51117.
Ma, Z., Ahuja, S. & Rowley, C. W. 2010 Reduced-order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn. 25 (1–4), 233247.
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A. & von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (10), 48254852.
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R. & Eckelmann, H. 1994 A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids 6 (1), 124143.
Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.
Olshausen, B. A. & Field, D. J. 1996 Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 (6583), 607609.
Olshausen, B. A. & Field, D. J. 2004 Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14 (4), 481487.
Pope, S. B. 2009 Turbulent Flows, 6th edn. Cambridge University Press.
Rowley, C. W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (03), 9971013.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Maths 45, 561571.
Terragni, F., Valero, E. & Vega, J. 2011 Local POD plus Galerkin projection in the unsteady lid-driven cavity problem. SIAM J. Sci. Comput. 33 (6), 35383561.
Tibshirani, R. 1996 Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 267288.
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.
Yang, J., Yu, K., Gong, Y. & Huang, T. 2009 Linear spatial pyramid matching using sparse coding for image classification. In Computer Vision and Pattern Recognition, pp. 17941801. IEEE.
Yang, J., Yu, K. & Huang, T. 2010 Efficient highly over-complete sparse coding using a mixture model. In Computer Vision–ECCV 2010, pp. 113126. Springer.
Zhou, K., Doyle, J. C. & Glover, K. 1996 Robust and Optimal Control, 1st edn. Prentice Hall.
Zuo, W., Meng, D., Zhang, L., Feng, X. & Zhang, D. 2013 A generalized iterated shrinkage algorithm for non-convex sparse coding. In Proceedings of the IEEE International Conference on Computer Vision, pp. 217224.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Model order reduction using sparse coding exemplified for the lid-driven cavity

  • Rohit Deshmukh (a1), Jack J. McNamara (a1), Zongxian Liang (a1), J. Zico Kolter (a2) and Abhijit Gogulapati (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.