Andrews, M. J. & Dalziel, S. B.
2010
Small Atwood number Rayleigh–Taylor experiments. Phil. Trans. R. Soc. Lond. A
368 (1916), 1663–1679.
Cabot, W. H. & Cook, A. W.
2006
Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nat. Phys.
2 (8), 562–568.
Cook, A. W. & Dimotakis, P. E.
2001
Transition stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech.
443, 69–99.
Davies-Wykes, M. S. & Dalziel, S. B.
2014
Efficient mixing in stratified flows: experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech.
756, 1027–1057.
Dimonte, G., Youngs, D. L., Dimits, A., Weber, S., Marinak, M., Wunsch, S., Garasi, C., Robinson, A., Andrews, M. J., Ramaprabhu, P.
et al.
2004
A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids
16, 1668–1693.
Dimotakis, P. E.
2005
Turbulent mixing. Annu. Rev. Fluid Mech.
37, 329–356.
Donzis, D. A., Gibbon, J. D., Kerr, R. M., Gupta, A., Pandit, R. & Vincenzi, D.
2013
Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations. J. Fluid Mech.
732, 316–331.
Gibbon, J. D.
2015
High–low frequency slaving and regularity issues in the 3D Navier–Stokes equations. IMA J. Appl. Maths
81, 308–320.
Gibbon, J. D., Donzis, D. A., Kerr, R. M., Gupta, A., Pandit, R. & Vincenzi, D.
2014
Regimes of nonlinear depletion and regularity in the 3D Navier–Stokes equations. Nonlinearity
27, 1–19.
Glimm, J., Grove, J. W., Li, X. L., Oh, W. & Sharp, D. H.
2001
A critical analysis of Rayleigh–Taylor growth rates. J. Comput. Phys.
169 (2), 652–677.
Hyunsun, L., Hyeonseong, J., Yan, Y. & Glimm, J.
2008
On validation of turbulent mixing simulations for Rayleigh–Taylor instability. Phys. Fluids
20, 012102.
Lawrie, A. G. W. & Dalziel, S. B.
2011
Rayleigh–Taylor mixing in an otherwise stable stratification. J. Fluid Mech.
688, 507–527.
Lee, H., Jin, H., Yu, Y. & Glimm, J.
2008
On validation of turbulent mixing simulations for Rayleigh–Taylor instability. Phys. Fluids
20, 1–8.
Livescu, D.
2013
Numerical simulations of two-fluid mixing at large density ratios and applications to the Rayleigh–Taylor instability. Phil. Trans. R. Soc. Lond. A
371, 20120185.
Livescu, D., Canada, C., Kanov, K., Burns, R. & Pulido, J.2014 Homogeneous buoyancy driven turbulence data set. LA-UR-14-20669.
Livescu, D., Mohd-Yusof, J., Petersen, M. R. & Grove, J. W.2009 A computer code for direct numerical simulation of turbulent flows. Tech. Rep. LA-CC-09-100. Los Alamos National Laboratory.
Livescu, D. & Ristorcelli, J. R.
2007
Buoyancy-driven variable-density turbulence. J. Fluid Mech.
591, 43–71.
Livescu, D. & Ristorcelli, J. R.
2008
Variable-density mixing in buoyancy-driven turbulence. J. Fluid Mech.
605, 145–180.
Luo, G. & Hou, T.
2014a
Potentially sinugular solutions of the 3D axisymmetric Euler equations. Proc. Natl Acad. Sci. USA
111, 12968–12973.
Luo, G. & Hou, T.
2014b
Toward the finite time blow-up of the 3D incompressible Euler equations: a numerical investigation. Multiscale Model. Simul.
12, 1722–1776.
Petrasso, R. D.
1994
Rayleigh’s challenge endures. Nat. Phys.
367 (6460), 217–218.
Rayleigh, Lord
1900
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. In Scientific Papers, vol. 2, p. 598. Cambridge University Press.
Sharp, D. H.
1984
An overview of Rayleigh–Taylor instability. Phys. D
12D, 3–18.
Tailleux, R.
2013
Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech.
45, 35–58.
Taylor, G. I.
1950
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond A
201 (1065), 192–196.
Youngs, D. L.
1984
Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. D
12 (1–3), 32–44.
Youngs, D. L.
1989
Modelling turbulent mixing by Rayleigh–Taylor instability. Phys. D
37, 270–287.