Skip to main content

Sheltering the perturbed vortical layer of electroconvection under shear flow

  • Rhokyun Kwak (a1), Van Sang Pham (a2) (a3) and Jongyoon Han (a3) (a4) (a5)

Sheltering of a perturbed vortical layer by a shear flow is a common method to control turbulence and transport in plasma physics. Despite the desire to exploit this phenomenon in wider engineering applications, shear sheltering has rarely been observed in general non-ionized fluids. In this study, we visualize this shear sheltering in a generic neutral-fluid situation in electromembrane desalination: electroconvection (EC) under the Hagen–Poiseuille flow initiated by ion concentration polarization. Our work is the first demonstration of shear sheltering in electrochemical systems. Experiment, numerical simulation and scaling analysis accurately capture the effect by pinpointing the threshold for shear suppression. Determined by balancing the velocity fluctuation (with EC vortices) and the flow shear (with no-slip walls), the threshold for shear suppression is scaled as the EC height. Stable EC with coherent unidirectional vortices occurs under the threshold height, whereas chaotic EC occurs beyond this height as the EC-induced vortical perturbation overwhelms the flow shear. Attractors in a time-delay phase space illustrate this sequence of steady–periodic (stable EC)–chaotic transitions precisely. Going one step further, the shear sheltering effect is decoupled from the shear-independent mechanism of vortex suppression, i.e. vortex sweeping by the mean flow. In the frequency domain, this shear-independent effect is negligible for stable EC (when shear sheltering dominates), whereas it can reduce the level of chaotic fluctuations of chaotic EC (when shear sheltering weakens). Lastly, taken together, we describe the EC-induced convective ion transport by the new scaling law for the electric Nusselt number as a function of the electric Rayleigh number and the Reynolds number. This work not only expands the scientific understanding of EC and the shear sheltering effect, but also affects a broad range of electrochemical applications, including desalination, energy harvesting and sensors.

Corresponding author
Email address for correspondence:
Hide All
Bassett, M. R. & Hudson, J. L. 1989 Quasiperiodicity and chaos during an electrochemical reaction. J. Phys. Chem. 93 (7), 27312737.
Beyer, P., Benkadda, S., Fuhr-Chaudier, G., Garbet, X., Ghendrih, Ph. & Sarazin, Y. 2005 Nonlinear dynamics of transport barrier relaxations in tokamak edge plasmas. Phys. Rev. Lett. 94, 105001.
Choi, J.-H., Lee, H.-J. & Moon, S.-H. 2001 Effects of electrolytes on the transport phenomena in a cation-exchange membrane. J. Colloid Interface Sci. 238 (1), 188195.
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.
Dritschel, D. G. 1989 On the stabilization of a two-dimensional vortex strip by adverse shear. J. Fluid. Mech. 206, 193221.
Druzgalski, C. L., Andersen, M. B. & Mani, A. 2013 Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25 (11), 110804.
Dukhin, S. S. 1991 Electrokinetic phenomena of the second kind and their applications. Adv. Colloid Interface Sci. 35, 173196.
Gollub, J. P. & Benson, S. V. 1980 Many routes to turbulent convection. J. Fluid Mech. 100 (3), 449470.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Hunt, J. C. R. & Durbin, P. A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24 (6), 375404.
Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. & Han, J. 2007 Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 99, 044501.
Kwak, R., Guan, G., Peng, W. K. & Han, J. 2013a Microscale electrodialysis: concentration profiling and vortex visualization. Desalination 308, 138146.
Kwak, R., Pham, V. S., Lim, K. M. & Han, J. 2013b Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for electroconvective vortices. Phys. Rev. Lett. 110 (11), 114501.
Kwak, R., Pham, V. S., Kim, B., Chen, L. & Han, J. 2016 Enhanced salt removal by unipolar ion conduction in ion concentration polarization desalination. Sci. Rep. 6, 25349.
Mishchuk, N., Gonzalez-Caballero, F. & Takhistov, P. 2001 Electroosmosis of the second kind and current through curved interface. Colloid Surface A 181, 131144.
Mishchuk, N. A. & Takhistov, P. V. 1995 Electroosmosis of the second kind. Colloid Surfaces A 95 (2), 119131.
Packard, N. H., Crutchfield, J. P., Farmer, J. D. & Shaw, R. S. 1980 Geometry from a time series. Phys. Rev. Lett. 45, 712716.
Pham, V. S., Li, Z., Lim, K. M., White, J. K. & Han, J. 2012 Direct numerical simulation of electroconvective instability and hysteretic current–voltage response of a permselective membrane. Phys. Rev. E 86, 046310.
Posner, J. D., Pérez, C. L. & Santiago, J. G. 2012 Electric fields yield chaos in microflows. Proc. Natl Acad. Sci. USA 109 (36), 1435314356.
Probstein, R. 2003 Physicochemical Hydrodynamics: An Introduction. Wiley.
Rubinstein, I. & Shtilman, L. 1979 Voltage against current curves of cation exchange membranes. J. Chem. Soc., Faraday Transactions 2: Molecular Chem. Phys. 75, 231246.
Rubinstein, I. & Zaltzman, B. 2000 Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62, 22382251.
Rubinstein, S. M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R. G. H., Mugele, F. & Wessling, M. 2008 Direct observation of a nonequilibrium electro-osmotic instability. Phys. Rev. Lett. 101, 236101.
Schoch, R. B., Han, J. & Renaud, P. 2008 Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839883.
Shats, M. G., Xia, H., Punzmann, H. & Falkovich, G. 2007 Suppression of turbulence by self-generated and imposed mean flows. Phys. Rev. Lett. 99, 164502.
Sinha, M., Kevrekidis, I. G. & Smits, A. J. 2006 Experimental study of a Neimark–Sacker bifurcation in axially forced Taylor–Couette flow. J. Fluid Mech. 558, 132.
Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.
Strugarek, A., Sarazin, Y., Zarzoso, D., Abiteboul, J., Brun, A. S., Cartier-Michaud, T., Dif-Pradalier, G., Garbet, X., Ghendrih, Ph., Grandgirard, V., Latu, G., Passeron, C. & Thomine, O. 2013 Unraveling quasiperiodic relaxations of transport barriers with gyrokinetic simulations of tokamak plasmas. Phys. Rev. Lett. 111, 145001.
Swinney, H. L. 1983 Observations of order and chaos in nonlinear systems. Physica D 7 (1), 315.
Terry, P. W. 2000a Does flow shear suppress turbulence in nonionized flows? Phys. Plasmas 7, 16531661.
Terry, P. W. 2000b Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109165.
Urtenov, M. K., Uzdenova, A. M., Kovalenko, A. V., Nikonenko, V. V., Pismenskaya, N. D., Vasil’eva, V. I., Sistat, P. & Pourcelly, G. 2013 Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells. J. Membr. Sci. 447, 190202.
Vastano, J. A. & Moser, R. D. 1991 Short-time Lyapunov exponent analysis and the transition to chaos in Taylor–Couette flow. J. Fluid Mech. 233, 83118.
Wulf, P., Egbers, C. & Rath, H. J. 1999 Routes to chaos in wide-gap spherical Couette flow. Phys. Fluids 11 (6), 13591372.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Kwak et al. supplementary movie
Supporting Video of diffusion-dominant cases (2.5-3.75V), stable EC (7.5V), and chaotic EC (15V)

 Video (4.7 MB)
4.7 MB

Kwak et al. supplementary movie
Supporting Video of the stable and chaotic ECs at the threshold

 Video (1.3 MB)
1.3 MB
Supplementary materials

Kwak supplementary material
Supplementary information

 Word (6.2 MB)
6.2 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed