Skip to main content
    • Aa
    • Aa

Shore protection by oblique seabed bars

  • Louis-Alexandre Couston (a1), Mir Abbas Jalali (a1) (a2) and Mohammad-Reza Alam (a1)

Shore protection by small seabed bars was once considered possible because seafloor undulations strongly reflect surface waves of twice the wavelength by the so-called Bragg resonance mechanism. The idea, however, proved ‘unreliable’ when it was realized that a patch of longshore seabed bars adjacent to a reflective shore could result in larger waves at the shoreline than for the case of a flat seabed. Here we propose to revamp the Bragg resonance mechanism as a means of coastal protection by considering oblique seabed bars that divert, rather than reflect, shore-normal incident waves to the shore-parallel direction. We show, via multiple-scale analysis supported by direct numerical simulations, that the creation of a large protected wake near the shoreline requires a bi-chromatic patch to deflect the incident waves to the shore-parallel direction. With two superposed sets of oblique seabed bars, the incident wave energy becomes efficiently deflected far to the sides, leaving a wake of decreased wave activity downstream of the patch. We demonstrate that the shore protection efficiency provided by this novel arrangement is not affected by reflection of leaked waves at the shoreline, and that it is relatively robust against small frequency detuning.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M.-R. Alam 2012a Broadband cloaking in stratified seas. Phys. Rev. Lett. 108 (8), 084502.

M.-R. Alam 2012b Nonlinear analysis of an actuated seafloor-mounted carpet for a high-performance wave energy extraction. Proc. R. Soc. Lond. A 468 (2146), 31533171.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2009a Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part 2. Numerical simulation. J. Fluid Mech. 624, 225253.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2009b Waves due to an oscillating and translating disturbance in a two-layer density-stratified fluid. J. Engng Maths 65 (2), 179200.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2010 Oblique sub- and super-harmonic Bragg resonance of surface waves by bottom ripples. J. Fluid Mech. 643, 437447.

M.-R. Alam , Y. Liu  & D. K. P. Yue 2011 Attenuation of short surface waves by the sea floor via nonlinear sub-harmonic interaction. J. Fluid Mech. 689, 529540.

G. A. Athanassoulis  & K. A. Belibassakis 1999 A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech. 389, 275301.

J. A. Bailard , J. W. DeVries  & J. T. Kirby 1992 Considerations in using Bragg reflection for storm erosion protection. J. Waterways Port Coast. Ocean Engng 118 (1), 6274.

J. A. Bailard , J. W. DeVries , J. T. Kirby  & R. T. Guza 1991 Bragg reflection breakwater: a new shore protection method? In Coastal Engineering Proceedings 1990, pp. 17021715. ASCE.

K. A. Belibassakis , G. A. Athanassoulis  & T. P. Gerostathis 2001 A coupled-mode model for the refraction–diffraction of linear waves over steep three-dimensional bathymetry. Appl. Ocean Res. 23 (6), 319336.

H. F. Burcharth , M. Kramer , A. Lamberti  & B. Zanuttigh 2006 Structural stability of detached low crested breakwaters. Coast. Engng 53 (4), 381394.

R. A. Dalrymple , J. T. Kirby  & P. A. Hwang 1984 Wave diffraction due to areas of energy dissipation. J. Waterways Port Coast. Ocean Engng 110 (1), 6779.

A. G. Davies 1982 The reflection of wave energy by undulations on the seabed. Dyn. Atmos. Oceans 6 (4), 207232.

A. G. Davies  & A. D. Heathershaw 1984 Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech. 144, 419443.

D. G. Dommermuth  & D. K. P. Yue 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.

C. Dulou , M. Belzons  & V. Rey 2000 Laboratory study of wave bottom interaction in the bar formation on an erodible sloping bed. J. Geophys. Res. 105 (C8), 1974519762.

S. Elgar , B. Raubenheimer  & T. H. C. Herbers 2003 Bragg reflection of ocean waves from sandbars. Geophys. Res. Lett. 30 (1), 16.

K. Emanuel 2005 Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436 (7051), 686688.

I. Fredholm 1903 Sur une classe d’équations fonctionnelles. Acta Mathematica 27 (1), 365390.

E. Guazzelli , V. Rey  & M. Belzons 1992 Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech. 245, 301317.

A. D. Heathershaw 1982 Seabed-wave resonance and sand bar growth. Nature 296 (5855), 343345.

T. H. C. Herbers , S. Elgar  & R. T. Guza 1999 Directional spreading of waves in the nearshore. J. Geophys. Res.: Oceans 104 (C4), 76837693.

L. N. Howard  & J. Yu 2007 Normal modes of a rectangular tank with corrugated bottom. J. Fluid Mech. 593, 209234.

A. B. M. Khan-Mozahedy , J. J. Muñoz Perez , M. G. Neves , F. Sancho  & R. Cavique 2016 Mechanics of the scouring and sinking of submerged structures in a mobile bed: a physical model study. Coast. Engng 110, 5063.

J. T. Kirby 1986 A general wave equation for waves over rippled beds. J. Fluid Mech. 162, 171186.

J. T. Kirby 1993 A note on Bragg scattering of surface waves by sinusoidal bars. Phys. Fluids A 5 (2), 380386.

J. T. Kirby  & J. P. Anton 1991 Bragg reflection of waves by artificial bars. In Coastal Engineering Proceedings 1990, pp. 757768.

M. Kramer , B. Zanuttigh , J. W. Van der Meer , C. Vidal  & F. X. Gironella 2005 Laboratory experiments on low-crested breakwaters. Coast. Engng 52 (10), 867885.

P. L.-F. Liu , H. Yeh , P. Lin , K.-T. Chang  & Y.-S. Cho 1998 Generation and evolution of edge-wave packets. Phys. Fluids 10 (7), 16351657.

Y. Liu  & D. K. P. Yue 1998 On generalized Bragg scattering of surface waves by bottom ripples. J. Fluid Mech. 356, 297326.

P. A. Madsen , D. R. Fuhrman  & B. Wang 2006 A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Engng 53 (5), 487504.

R. Magne , V. Rey  & F. Ardhuin 2005 Measurement of wave scattering by topography in the presence of currents. Phys. Fluids 17 (12), 126601.

C. C. Mei 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.

C. C. Mei , T. Hara  & M. Naciri 1988 Note on Bragg scattering of water waves by parallel bars on the seabed. J. Fluid Mech. 186, 147162.

C. C. Mei , T. Hara  & J. Yu 2001 Longshore bars and Bragg resonance. In Geomorphological Fluid Mechanics, pp. 500527. Springer.

A. Mitra  & M. D. Greenberg 1984 Slow interactions of gravity waves and a corrugated sea bed. Trans. ASME J. Appl. Mech. 51 (2), 251255.

M. Naciri  & C. C. Mei 1988 Bragg scattering of water waves by a doubly periodic seabed. J. Fluid Mech. 192, 5174.

T. J. O’Hare  & A. G. Davies 1992 A new model for surface wave propagation over undulating topography. Coast. Engng 18 (3–4), 251266.

T. J. O’Hare  & A. G. Davies 1993 Sand bar evolution beneath partially-standing waves: laboratory experiments and model simulations. Cont. Shelf Res. 13 (11), 11491181.

Z. G. Pinsker 1978 Dynamical Scattering of X-rays in Crystals, vol. 3. Springer.

D. Porter  & D. J. Staziker 1995 Extensions of the mild-slope equation. J. Fluid Mech. 300, 367382.

R. Porter  & D. Porter 2001 Interaction of water waves with three-dimensional periodic topography. J. Fluid Mech. 434, 301335.

R. Ranasinghe  & I. L. Turner 2006 Shoreline response to submerged structures: a review. Coast. Engng 53 (1), 6579.

S. N. Seo 2014 Transfer matrix of linear water wave scattering over a stepwise bottom. Coast. Engng 88, 3342.

A. Toffoli , O. Gramstad , K. Trulsen , J. Monbaliu , E. Bitner-Gregersen  & M. Onorato 2010 Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J. Fluid Mech. 664, 313336.

P. J. Webster , G. J. Holland , J. A. Curry  & H.-R. Chang 2005 Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309 (5742), 18441846.

P. D. Weidman , A. Herczynski , J. Yu  & L. N. Howard 2015 Experiments on standing waves in a rectangular tank with a corrugated bed. J. Fluid Mech. 777, 122150.

B. J. West , K. A. Brueckner , R. S. Janda , D. M. Milder  & R. L. Milton 1987 A new numerical method for surface hydrodynamics. J. Geophys. Res. 92 (C11), 1180311824.

J. Yu  & L. N. Howard 2012 Exact Floquet theory for waves over arbitrary periodic topographies. J. Fluid Mech. 712, 451470.

J. Yu  & C. C. Mei 2000 Do longshore bars shelter the shore? J. Fluid Mech. 404, 251268.

V. E. Zakharov 1968 Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 108 *
Loading metrics...

Abstract views

Total abstract views: 258 *
Loading metrics...

* Views captured on Cambridge Core between 21st February 2017 - 19th August 2017. This data will be updated every 24 hours.