Skip to main content
    • Aa
    • Aa

Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface

  • Aaron Dörr (a1), Steffen Hardt (a1), Hassan Masoud (a2) (a3) and Howard A. Stone (a3)

Explicit analytical expressions for the drag and diffusion coefficients of a spherical particle attached to the flat interface between two immiscible fluids are constructed for the case of a vanishing viscosity ratio between the fluid phases. The model is designed to account explicitly for the dependence on the contact angle between the two fluids and the solid surface. The Lorentz reciprocal theorem is applied in the context of geometric perturbations from the limiting cases of  $90^{\circ }$ and  $180^{\circ }$ contact angles. The model agrees well with the experimental and numerical data from the literature. Also, an advantage of the method utilized is that the drag and diffusion coefficients can be calculated up to one order higher in the perturbation parameter than the known velocity and pressure fields. Extensions to other particle shapes with known velocity and pressure fields are straightforward.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Ally  & A. Amirfazli 2010 Magnetophoretic measurement of the drag force on partially immersed microparticles at air–liquid interfaces. Colloids Surf. A 360, 120128.

J. Bławzdziewicz , M. L. Ekiel-Jeżewska  & E. Wajnryb 2010 Motion of a spherical particle near a planar fluid–fluid interface: the effect of surface incompressibility. J. Chem. Phys. 133, 114702.

H. Brenner 1964 The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci. 19, 519539.

H. Brenner  & L. G. Leal 1978 A micromechanical derivation of Fick’s law for interfacial diffusion of surfactant molecules. J. Colloid Interface Sci. 65 (2), 191209.

W. Chen  & P. Tong 2008 Short-time self-diffusion of weakly charged silica spheres at aqueous interfaces. Eur. Phys. Lett. 84, 28003.

B. Cichocki , M. L. Ekiel-Jeewska , G. Nägele  & E. Wajnryb 2004 Motion of spheres along a fluid–gas interface. J. Chem. Phys. 121, 23052316.

K. Danov , R. Aust , F. Durst  & U. Lange 1995 Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175, 3645.

K. D. Danov , T. D. Gurkov , H. Raszillier  & F. Durst 1998 Stokes flow caused by the motion of a rigid sphere close to a viscous interface. Chem. Engng Sci. 53 (19), 34133434.

A. M. J. Davis 1990 Stokes drag on a disk sedimenting toward a plane or with other disks; additional effects of a side wall or free surface. Phys. Fluids A 2, 301312.

K. Du , J. A. Liddle  & A. J. Berglund 2012 Three-dimensional real-time tracking of nanoparticles at an oil–water interface. Langmuir 28, 91819188.

T. M. Fischer , P. Dhar  & P. Heinig 2006 The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451475.

G. R. Fulford  & J. R. Blake 1986 Force distribution along a slender body straddling an interface. J. Austral. Math. Soc. B 27, 295315.

J. Happel  & H. Brenner 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.

D. J. Jeffrey  & Y. Onishi 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.

I. A. Larmour , G. C. Saunders  & S. E. J. Bell 2008 Sheets of large superhydrophobic metal particles self assembled on water by the cheerios effect. Angew. Chem. Intl Ed. Engl. 47, 50435045.

L. G. Leal 1980 Particle motions in a viscous fluid. Annu Rev. Fluid Mech. 12, 435476.

M. E. O’Neill , K. B. Ranger  & H. Brenner 1986 Slip at the surface of a translating-rotating sphere bisected by a free surface bounding a semiinfinite viscous fluid: removal of the contactline singularity. Phys. Fluids 29, 913924.

Y. Peng , W. Chen , Th. M. Fischer , D. A. Weitz  & P. Tong 2009 Short-time self-diffusion of nearly hard spheres at an oil–water interface. J. Fluid Mech. 618, 243261.

J. T. Petkov , N. D. Denkov , K. D. Danov , O. D. Velev , R. Aust  & F. Durst 1995 Measurement of the drag coefficient of spherical particles attached to fluid interfaces. J. Colloid Interface Sci. 172, 147154.

C. Pozrikidis 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.

B. Radoev , M. Nedjalkov  & V. Djakovich 1992 Brownian motion at liquid–gas interfaces. 1. Diffusion coefficients of macroparticles at pure interfaces. Langmuir 8, 29622965.

K. B. Ranger 1978 The circular disk straddling the interface of a two-phase flow. Intl J. Multiphase Flow 4, 263277.

C. Schönecker  & S. Hardt 2014 Electro-osmotic flow along superhydrophobic surfaces with embedded electrodes. Phys. Rev. E 89, 063005.

I. Sriram , R. Walder  & D. K. Schwartz 2012 Stokes–Einstein and desorption-mediated diffusion of protein molecules at the oil–water interface. Soft Matt. 8, 60006003.

H. A. Stone  & A. D. T. Samuel 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77 (19), 41024104.

R. B. Walder , A. Honciuc  & D. K. Schwartz 2010 Phospholipid diffusion at the oil–water interface. J. Phys. Chem. B 114, 1148411488.

D. Wang , S. Yordanov , H. M. Paroor , A. Mukhopadhyay , C. Y. Li , H.-J. Butt  & K. Koynov 2011 Probing diffusion of single nanoparticles at water-oil interfaces. Small 7 (24), 35023507.

M. Zabarankin 2007 Asymmetric three-dimensional Stokes flow about two fused equal spheres. Proc. R. Soc. Lond. A 463, 23292349.

L. Zhang , J. Wu , Y. Wang , Y. Long , N. Zhao  & J. Xu 2012 Combination of bioinspiration: a general route to superhydrophobic particles. J. Am. Chem. Soc. 134, 98799881.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Dörr supplementary material
Dörr supplementary material 1

 Unknown (211 KB)
211 KB


Full text views

Total number of HTML views: 16
Total number of PDF views: 217 *
Loading metrics...

Abstract views

Total abstract views: 482 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd August 2017. This data will be updated every 24 hours.