Skip to main content Accessibility help

Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing

  • Jie Yao (a1), Xi Chen (a1) and Fazle Hussain (a1)


Drag control using a newly developed spanwise opposed wall-jet forcing (SOJF) method is studied via direct numerical simulation of the incompressible Navier–Stokes equations in a turbulent channel flow (at the friction Reynolds numbers $Re_{\unicode[STIX]{x1D70F}}=180$ and 550). SOJF is characterized by three control parameters: the forcing amplitude $A^{+}$ , the spanwise spacing $\unicode[STIX]{x1D706}^{+}$ and the wall-jet height $y_{c}^{+}$ ( $+$ indicates viscous scaling). At $Re_{\unicode[STIX]{x1D70F}}=180$ , notable drag reduction is achieved for wide ranges of $A^{+}$ , $\unicode[STIX]{x1D706}^{+}$ and $y_{c}^{+}$ , with an optimal drag reduction of approximately 19 % found for $A^{+}\approx 0.015$ , $\unicode[STIX]{x1D706}^{+}\approx 1200$ and $y_{c}^{+}\approx 30$ . The drag reduction results from mergers of numerous low-speed typical individual streaks together by the wall jets, so that the slope of the merged streak envelope and hence the streak strength are reduced below the critical values required for streak instability as well as for transient growth; consequently, the generation of drag inducing near-wall streamwise vortices is suppressed. Through analysis using the FIK identity (Fukagata et al. Phys. Fluids, vol. 14 (11), 2002, pp. L73–L76) in combination with the triple decomposition and the spanwise wavenumber spectrum of the Reynolds shear stress, we find that the control significantly decreases skin friction due to the small scale random turbulent structures (from 75 to 23 % for the optimal case), but injects a dominant contribution at the forcing scale (approximately 34 %). As $A^{+}$ or $y_{c}^{+}$ increases, the drag reduction degrades due to the downwash near the initiation of the forcing wall jet. The energy input required for the excitation is found to be small, yielding a 17 % net power saving for the optimal control case. To determine the $Re$ dependence of the drag reduction, the control strategy is further validated at a higher $Re_{\unicode[STIX]{x1D70F}}=550$ . If the control parameters are kept the same as at $Re_{\unicode[STIX]{x1D70F}}=180$ (i.e. $A^{+}\approx 0.015$ , $\unicode[STIX]{x1D706}^{+}\approx 1200$ , $y_{c}^{+}\approx 30$ ), the drag reduction decreases to 10 %; however, interestingly, with modestly changed parameters ( $A^{+}\approx 0.018$ , $\unicode[STIX]{x1D706}^{+}\approx 1700$ , $y_{c}^{+}\approx 50$ ), drag reduction increases to about 15 %. This additional drag reduction results from the further suppression of turbulent structures in the buffer and log regions. This result, therefore, suggests prospects for drag reduction at even higher $Re$ via a proper choice of the SOJF parameters.


Corresponding author

Email address for correspondence:


Hide All
Abbassi, M. R., Baars, W. J., Hutchins, N. & Marusic, I. 2017 Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures. Intl J. Heat Fluid Flow 67, 3041.
Agostini, L., Touber, E. & Leschziner, M. A. 2014 Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from dns-predicted phase-wise property variations at ret = 1000. J. Fluid Mech. 743, 606635.
Akhavan, R., Jung, W. J. & Mangiavacchi, N. 1993 Turbulence control in wall-bounded flows by spanwise oscillations. In Advances in Turbulence IV, pp. 299303. Springer.
Bechert, D. W., Bruse, M., Hage, W., Van der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.
Berger, T. W., Kim, J., Lee, C. & Lim, J. 2000 Turbulent boundary layer control utilizing the lorentz force. Phys. Fluids 12 (3), 631649.
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5 (3), 774777.
Canton, J., Örlü, R., Chin, C., Hutchins, N., Monty, J. & Schlatter, P. 2016a On large-scale friction control in turbulent wall flow in low Reynolds number channels. Flow Turbul. Combust. 97, 117.
Canton, J., Örlü, R., Chin, C. & Schlatter, P. 2016b Reynolds number dependence of large-scale friction control in turbulent channel flow. Phys. Rev. Fluids 1 (8), 081501.
Checco, A., Ocko, B. M., Rahman, A., Black, C. T., Tasinkevych, M., Giacomello, A. & Dietrich, S. 2014 Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Phys. Rev. Lett. 112 (21), 216101.
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.
Choi, J.-I., Xu, C.-X. & Sung, H. J. 2002 Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40 (5), 842850.
Chung, Y. M. & Talha, T. 2011 Effectiveness of active flow control for turbulent skin friction drag reduction. Phys. Fluids 23 (2), 025102.
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.
Deng, B.-Q. & Xu, C.-X. 2012 Influence of active control on stg-based generation of streamwise vortices in near-wall turbulence. J. Fluid Mech. 710, 234259.
Duvvuri, S. & McKeon, B. J. 2015 Triadic scale interactions in a turbulent boundary layer. J. Fluid Mech. 767, R4.
Erfani, R., Zare-Behtash, H., Hale, C. & Kontis, K. 2015 Development of dbd plasma actuators: the double encapsulated electrode. Acta Astron. 109, 132143.
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.
Gatti, D. & Quadrio, M. 2013 Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25 (12), 125109.
Gatti, D. & Quadrio, M. 2016 Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553582.
Ghebali, S., Chernyshenko, S. I. & Leschziner, M. A. 2017 Can large-scale oblique undulations on a solid wall reduce the turbulent drag? Phys. Fluids 29 (10), 105102.
de Giovanetti, M., Hwang, Y. & Choi, H. 2016 Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511538.
de Giovanetti, M., Sung, H. J. & Hwang, Y. 2017 Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions. J. Fluid Mech. 832, 483513.
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.
Iuso, G., Onorato, M., Spazzini, P. G. & Di Cicca, G. M. 2002 Wall turbulence manipulation by large-scale streamwise vortices. J. Fluid Mech. 473, 2358.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.
Jung, W. J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 16051607.
Kim, J. 2011 Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. Lond. A 369 (1940), 13961411.
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (04), 741773.
Laizet, S. & Lamballais, E. 2009 High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 59896015.
Laizet, S. & Li, N. 2011 Incompact3d: a powerful tool to tackle turbulence problems with up to O (105) computational cores. Intl J. Numer. Meth. Fluids 67 (11), 17351757.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 5200. J. Fluid Mech. 774, 395415.
Li, Y. P., Wong, C. W., Li, Y. Z., Zhang, B. F. & Zhou, Y. 2014 Drag reduction of a turbulent boundary layer using plasma actuators. In Proceeding of the 19th Australasian Fluid Mechanics Conference, Australasian Fluid Mechanics Society.
Mahfoze, O. & Laizet, S. 2017 Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators. Intl J. Heat Fluid Flow 66, 8394.
Mamori, H., Iwamoto, K. & Murata, A. 2014 Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow. Phys. Fluids 26 (1), 015101.
Oliver, T. A., Malaya, N., Ulerich, R. & Moser, R. D. 2014 Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids 26 (3), 035101.
Park, H., Sun, G. & Kim, C.-J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.
Quadrio, M. 2011 Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A 369 (1940), 14281442.
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4.
Rastegari, A. & Akhavan, R. 2018 The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. J. Fluid Mech. 838, 68104.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.
Ricco, P. & Hahn, S. 2013 Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267290.
Ricco, P. & Quadrio, M. 2008 Wall-oscillation conditions for drag reduction in turbulent channel flow. Intl J. Heat Fluid Flow 29 (4), 891902.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.
Schlatter, P., Li, Q., Örlü, R., Hussain, F. & Henningson, D. S. 2014 On the near-wall vortical structures at moderate Reynolds numbers. Eur. J. Mech. (B/Fluids) 48, 7593.
Schoppa, W. & Hussain, F. 1998 A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10 (5), 10491051.
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.
Segawa, T., Mizunuma, H., Murakami, K., Li, F.-C. & Yoshida, H. 2007 Turbulent drag reduction by means of alternating suction and blowing jets. Fluid Dyn. Res. 39 (7), 552568.
Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.
Thomas, F., Corke, T., Hussain, F., Duong, A., McGowan, R., Jasinski, C. & Simmons, D. 2016 Turbulent boundary layer drag reduction by active control of streak transient growth. In Bulletin of the APS, 69th Annual Metting of the APS Division of Fluid Dynamics, Vol. 61, No. 20, American Physics Society.
Touber, E. & Leschziner, M. A. 2012 Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150200.
Willis, A. P., Hwang, Y. & Cossu, C. 2010 Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow. Phys. Rev. E 82 (3), 036321.
Xi, C., Hussain, F. & She, Z.-S. 2018 Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses. J. Fluid Mech. 850, 401438.
Yakeno, A., Hasegawa, Y. & Kasagi, N. 2014 Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26 (8), 085109.
Yao, J., Chen, X., Thomas, F. & Hussain, F. 2017 Large-scale control strategy for drag reduction in turbulent channel flows. Phys. Rev. Fluids 2, 062601(R).
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing

  • Jie Yao (a1), Xi Chen (a1) and Fazle Hussain (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.