Skip to main content
×
Home

Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach

  • Vamsi Spandan (a1), Rodolfo Ostilla-Mónico (a1), Roberto Verzicco (a1) (a2) and Detlef Lohse (a1) (a3)
Abstract

Two-phase turbulent Taylor–Couette (TC) flow is simulated using an Euler–Lagrange approach to study the effects of a secondary phase dispersed into a turbulent carrier phase (here bubbles dispersed into water). The dynamics of the carrier phase is computed using direct numerical simulations (DNS) in an Eulerian framework, while the bubbles are tracked in a Lagrangian manner by modelling the effective drag, lift, added mass and buoyancy force acting on them. Two-way coupling is implemented between the dispersed phase and the carrier phase which allows for momentum exchange among both phases and to study the effect of the dispersed phase on the carrier phase dynamics. The radius ratio of the TC setup is fixed to ${\it\eta}=0.833$ , and a maximum inner cylinder Reynolds number of $Re_{i}=8000$ is reached. We vary the Froude number ( $Fr$ ), which is the ratio of the centripetal to the gravitational acceleration of the dispersed phase and study its effect on the net torque required to drive the TC system. For the two-phase TC system, we observe drag reduction, i.e. the torque required to drive the inner cylinder is lower compared with that of the single-phase system. The net drag reduction decreases with increasing Reynolds number $Re_{i}$ , which is consistent with previous experimental findings (Murai et al., J. Phys.: Conf. Ser., vol. 14, 2005, pp. 143–156; Phys. Fluids, vol. 20(3), 2008, 034101). The drag reduction is strongly related to the Froude number: for fixed Reynolds number we observe higher drag reduction when $Fr<1$ than for with $Fr>1$ . This buoyancy effect is more prominent in low $Re_{i}$ systems and decreases with increasing Reynolds number $Re_{i}$ . We trace the drag reduction back to the weakening of the angular momentum carrying Taylor rolls by the rising bubbles. We also investigate how the motion of the dispersed phase depends on $Re_{i}$ and $Fr$ , by studying the individual trajectories and mean dispersion of bubbles in the radial and axial directions. Indeed, the less buoyant bubbles (large $Fr$ ) tend to get trapped by the Taylor rolls, while the more buoyant bubbles (small $Fr$ ) rise through and weaken them.

Copyright
Corresponding author
Email address for correspondence: d.lohse@utwente.nl
References
Hide All
Andereck C. D., Liu S. S. & Swinney H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.
Auton T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199218.
Auton T. R., Hunt J. C. R. & Prud’Homme M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.
van den Berg T. H., van Gils D. P. M., Lathrop D. P. & Lohse D. 2007 Bubbly turbulent drag reduction is a boundary layer effect. Phys. Rev. Lett. 98 (8), 084501.
van den Berg T. H., Luther S., Lathrop D. P. & Lohse D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94 (4), 044501.
Capecelatro J. & Desjardins O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.
Ceccio S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183203.
Chouippe A., Climent E., Legendre D. & Gabillet C. 2014 Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys. Fluids 26 (4), 043304.
Climent E., Simonnet M. & Magnaudet J. 2007 Preferential accumulation of bubbles in Couette–Taylor flow patterns. Phys. Fluids 19 (8), 083301.
Dabiri S., Lu J. & Tryggvason G. 2013 Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids 25 (10), 102110.
Djeridi H., Fave J.-F., Billard J.-Y. & Fruman D. H. 1999 Bubble capture and migration in Couette–Taylor flow. Exp. Fluids 26, 233239.
Djeridi H., Gabillet C. & Billard J. Y. 2004 Two-phase Couette–Taylor flow: arrangement of the dispersed phase and effects on the flow structures. Phys. Fluids 16 (1), 128139.
Eckhardt B., Grossmann S. & Lohse D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.
Ferrante A. & Elghobashi S. 2004 On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J. Fluid Mech. 503, 345355.
Fokoua G. N., Gabillet C., Aubert A. & Colin C. 2015 Effect of bubbles arrangement on the viscous torque in bubbly Taylor–Couette flow. Phys. Fluids 27 (3), 034105.
van Gils D. P. M., Narezo Guzman D., Sun C. & Lohse D. 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.
Grossmann S., Lohse D. & Sun C. 2016 High Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48 (1), 5380.
Harleman M. J. W.2012 On the effect of turbulence on bubbles: experiments and numerical simulations of bubbles in wall-bounded flows. TU Delft, Delft University of Technology.
Jiménez J. 2011 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44 (1), 2745.
Lakkaraju R., Toschi F. & Lohse D. 2014 Bubbling reduces intermittency in turbulent thermal convection. J. Fluid Mech. 745, 124.
Lu J., Fernández A. & Tryggvason G. 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17 (9), 095102.
Lu J. & Tryggvason G. 2008 Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20 (4), 040701.
L’vov V. S., Pomyalov A., Procaccia I. & Tiberkevich V. 2005 Drag reduction by microbubbles in turbulent flows: the limit of minute bubbles. Phys. Rev. Lett. 94 (17), 174502.
Madavan N. K., Deutsch S. & Merkle C. L.1983 Reduction of turbulent skin friction by microbubbles. Tech. Rep. DTIC Document.
Madavan N. K., Deutsch S. & Merkle C. L. 1985 Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech. 156, 237256.
Magnaudet J. & Eames I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.
Mazzitelli I. M., Lohse D. & Toschi F. 2003 The effect of microbubbles on developed turbulence. Phys. Fluids 15 (1), L5L8.
Mei R. & Klausner J. F. 1992 Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity. Phys. Fluids. 4 (1), 6370.
Murai Y. 2014 Frictional drag reduction by bubble injection. Exp. Fluids 55 (7), 128.
Murai Y., Fukuda H., Oishi Y., Kodama Y. & Yamamoto F. 2007 Skin friction reduction by large air bubbles in a horizontal channel flow. Intl J. Multiphase Flow 33 (2), 147163.
Murai Y., Oiwa H. & Takeda Y. 2005 Bubble behavior in a vertical Taylor–Couette flow. J. Phys.: Conf. Ser. 14, 143156.
Murai Y., Oiwa H. & Takeda Y. 2008 Frictional drag reduction in bubbly Couette–Taylor flow. Phys. Fluids 20 (3), 034101.
Oresta P., Verzicco R., Lohse D. & Prosperetti A. 2009 Heat transfer mechanisms in bubbly Rayleigh–Bénard convection. Phys. Rev. E 80 (2), 026304.
Ostilla-Mónico R., Huisman S. G., Jannink T. J. G., Van Gils D. P. M., Verzicco R., Grossmann S., Sun C. & Lohse D. 2014a Optimal Taylor–Couette flow: radius ratio dependence. J. Fluid Mech. 747, 129.
Ostilla-Mónico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014b Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26 (1), 015114.
Ostilla-Mónico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014c Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Ostilla-Mónico R., Stevens R. J. A. M., Grossmann S., Verzicco R. & Lohse D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.
Pang M. J., Wei J. J. & Yu B. 2014 Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel. Ocean Engng 81, 5868.
Park H. J., Tasaka Y., Oishi Y. & Murai Y. 2015 Drag reduction promoted by repetitive bubble injection in turbulent channel flows. Intl J. Multiphase Flow 75, 1225.
van der Poel E. P., Ostilla-Mónico R., Donners J. & Verzicco R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.
Pope S. B. 2000 Turbulent Flow. Cambridge University Press.
Prosperetti A. & Tryggvason G. 2007 Computational Methods for Multiphase Flow. Cambridge University Press.
Shiomi Y., Kutsuna H., Akagawa K. & Ozawa M. 1993 Two-phase flow in an annulus with a rotating inner cylinder (flow pattern in bubbly flow region). Nucl. Engng Des. 141 (1), 2734.
Sugiyama K., Calzavarini E. & Lohse D. 2008 Microbubbly drag reduction in Taylor–Couette flow in the wavy vortex regime. J. Fluid Mech. 608, 2141.
Tryggvason G., Dabiri S., Aboulhasanzadeh B. & Lu J. 2013 Multiscale considerations in direct numerical simulations of multiphase flows. Phys. Fluids 25 (3), 031302.
Verzicco R. & Orlandi P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.
Watamura T., Tasaka Y. & Murai Y. 2013 Intensified and attenuated waves in a microbubble Taylor–Couette flow. Phys. Fluids 25 (5), 054107.
Xu J., Maxey M. R. & Karniadakis G. E. 2002 Numerical simulation of turbulent drag reduction using micro-bubbles. J. Fluid Mech. 468, 271281.
Yeung P. K. & Pope S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79 (2), 373416.
Yoshida K., Tasaka Y., Murai Y. & Takeda T. 2009 Mode transition in bubbly Taylor–Couette flow measured by PTV. J. Phys.: Conf. Ser. 147 (1), 012013.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 177 *
Loading metrics...

Abstract views

Total abstract views: 420 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.