Skip to main content Accessibility help

Driven particles at fluid interfaces acting as capillary dipoles

  • Aaron Dörr (a1) and Steffen Hardt (a1)

The dynamics of spherical particles driven along an interface between two immiscible fluids is investigated asymptotically. Under the assumptions of a pinned three-phase contact line (TCL) and very different viscosities of the two fluids, a particle assumes a tilted orientation. As it moves, it causes a deformation of the fluid interface which is also computed. The case of two interacting driven particles is studied via the linear superposition approximation. It is shown that the capillary interaction force resulting from the particle motion is dipolar in terms of the azimuthal angle and decays with the fifth power of the inter-particle separation, similar to a capillary quadrupole originating from undulations of the TCL. The dipolar interaction is demonstrated to exceed the quadrupolar interaction at moderate particle velocities.

Corresponding author
Email address for correspondence:
Hide All
Ally, J. & Amirfazli, A. 2010 Magnetophoretic measurement of the drag force on partially immersed microparticles at air–liquid interfaces. Colloids Surf. A 360, 120128.
Berdan, C. II & Leal, L. G. 1982 Motion of a sphere in the presence of a deformable interface. Part I. Perturbation of the interface from flat: the effects on drag and torque. J. Colloid Interface Sci. 87 (1), 6280.
Binks, B. P. 2002 Particles as surfactants: similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 2141.
Bławzdziewicz, J., Ekiel-Jeżewska, M. L. & Wajnryb, E. 2010 Motion of a spherical particle near a planar fluid–fluid interface: the effect of surface incompressibility. J. Chem. Phys. 133, 114702.
Brenner, H. 1964 The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci. 19, 519539.
Byerly, W. E. 1893 An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics. Ginn & Company.
Chan, D. Y. C., Henry, J. D. Jr & White, L. R. 1981 The interaction of colloidal particles collected at fluid interfaces. J. Colloid Interface Sci. 79 (2), 410418.
Chen, W. & Tong, P. 2008 Short-time self-diffusion of weakly charged silica spheres at aqueous interfaces. Eur. Phys. Lett. 84, 28003.
Cichocki, B., Ekiel-Jeżewska, M. L., Nägele, G. & Wajnryb, E. 2004 Motion of spheres along a fluid–gas interface. J. Chem. Phys. 121, 23052316.
Danov, K., Aust, R., Durst, F. & Lange, U. 1995 Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175, 3645.
Danov, K. D., Gurkov, T. D., Raszillier, H. & Durst, F. 1998 Stokes flow caused by the motion of a rigid sphere close to a viscous interface. Chem. Engng Sci. 53 (19), 34133434.
Danov, K. D., Kralchevsky, P. A., Naydenov, B. N. & Brenn, G. 2005 Interactions between particles with an undulated contact line at a fluid interface: capillary multipoles of arbitrary order. J. Colloid Interface Sci. 287, 121134.
Dassios, G. & Vafeas, P. 2001 Connection formulae for differential representations in Stokes flow. J. Comput. Appl. Maths 133, 283294.
Domínguez, A., Oettel, M. & Dietrich, S. 2008 Force balance of particles trapped at fluid interfaces. J. Chem. Phys. 128, 114904.
Du, K., Liddle, J. A. & Berglund, A. J. 2012 Three-dimensional real-time tracking of nanoparticles at an oil–water interface. Langmuir 28, 91819188.
Fischer, T. M., Dhar, P. & Heinig, P. 2006 The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451475.
Fortes, M. A. 1982 Attraction and repulsion of floating particles. Can. J. Chem. 60, 28892895.
Fulford, G. R. & Blake, J. R. 1986 Force distribution along a slender body straddling an interface. J. Austral. Math. Soc. B 27, 295315.
Ghezzi, F., Earnshaw, J. C., Finnis, M. & McCluney, M. 2001 Pattern formation in colloidal monolayers at the air–water interface. J. Colloid Interface Sci. 238, 433446.
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Horozov, T. S., Aveyard, R. & Clint, J. H. 2005 Particle zips: vertical emulsion films with particle monolayers at their surfaces. Langmuir 21, 23302341.
Huh, C. & Mason, S. G. 1974 The flotation of axisymmetric particles at horizontal liquid interfaces. J. Colloid Interface Sci. 47 (2), 271289.
Israelachvili, J. N. 2011 Intermolecular and Surface Forces, 3rd edn. Academic.
Koser, A. E., Keim, N. C. & Arratia, P. E. 2013 Structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields. Phys. Rev. E 88, 062304.
Kralchevsky, P. A. & Nagayama, K. 2000 Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85, 145192.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Lee, S. H., Chadwick, R. S. & Leal, L. G. 1979 Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz. J. Fluid Mech. 93 (4), 705726.
Moisy, F. & Rabaud, M. 2014 Mach-like capillary–gravity wakes. Phys. Rev. E 90, 023009.
Nicolson, M. M. 1949 The interaction between floating particles. Math. Proc. Camb. Phil. Soc. 45 (2), 288295.
Oettel, M. & Dietrich, S. 2008 Colloidal interactions at fluid interfaces. Langmuir 24, 14251441.
Oettel, M., Domínguez, A. & Dietrich, S. 2005 Effective capillary interaction of spherical particles at fluid interfaces. Phys. Rev. E 71, 051401.
O’Neill, M. E., Ranger, K. B. & Brenner, H. 1986 Slip at the surface of a translating–rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid: removal of the contact-line singularity. Phys. Fluids 29, 913924.
Park, B. J. & Furst, E. M. 2011 Attractive interactions between colloids at the oil–water interface. Soft Matt. 7, 76767682.
Petkov, J. T., Denkov, N. D., Danov, K. D., Velev, O. D., Aust, R. & Durst, F. 1995 Measurement of the drag coefficient of spherical particles attached to fluid interfaces. J. Colloid Interface Sci. 172, 147154.
Pitois, O. & Chateau, X. 2002 Small particle at a fluid interface: effect of contact angle hysteresis on force and work of detachment. Langmuir 18, 97519756.
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.
Radoev, B., Nedjalkov, M. & Djakovich, V. 1992 Brownian motion at liquid–gas interfaces. Part 1. Diffusion coefficients of macroparticles at pure interfaces. Langmuir 8, 29622965.
Rawson, K. J. 2001 Basic Ship Theory, vol. 1. Butterworth-Heinemann.
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.
Singh, P. & Hesla, T. I. 2004 The interfacial torque on a partially submerged sphere. J. Colloid Interface Sci. 280, 542543.
Singh, P. & Joseph, D. D. 2005 Fluid dynamics of floating particles. J. Fluid Mech. 530, 3180.
Singh, P., Joseph, D. D., Fischer, I. S. & Dalal, B. 2011 Role of particle inertia in adsorption at fluid–liquid interfaces. Phys. Rev. E 83, 041606.
Sriram, I., Walder, R. & Schwartz, D. K. 2012 Stokes–Einstein and desorption-mediated diffusion of protein molecules at the oil–water interface. Soft Matt. 8, 60006003.
Stamou, D., Duschl, C. & Johannsmann, D. 2000 Long-range attraction between colloidal spheres at the air–water interface: the consequence of an irregular meniscus. Phys. Rev. E 62 (4), 52635271.
Vassileva, N. D., van den Ende, D., Mugele, F. & Mellema, J. 2005 Capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21, 1119011200.
Würger, A. 2014 Thermally driven Marangoni surfers. J. Fluid Mech. 752, 589601.
Zabarankin, M. 2007 Asymmetric three-dimensional Stokes flow about two fused equal spheres. Proc. R. Soc. Lond. A 463, 23292349.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed