Skip to main content
×
Home

Drop impact into a deep pool: vortex shedding and jet formation

  • G. Agbaglah (a1), M.-J. Thoraval (a2) (a3), S. T. Thoroddsen (a2), L. V. Zhang (a1), K. Fezzaa (a4) and R. D. Deegan (a1)...
Abstract
Abstract

One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine the transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.

Copyright
Corresponding author
Email address for correspondence: agbagla@umich.edu
References
Hide All
Agbaglah G. & Deegan R. D. 2014 Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech. 752, 485496.
Agbaglah G., Delaux S., Fuster D., Hoepffner J., Josserand C., Popinet S., Ray P., Scardovelli R. & Zaleski S. 2011 Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Méc. 339, 194207.
Batchelor G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Castrejón-Pita A., Castrejón-Pita J. & Hutchings I. 2012 Experimental observation of von Kármán vortices during drop impact. Phys. Rev. E 86, 045301.
Cossali G. E., Coghe A. & Marengo M. 1997 Impact of a single drop on a wetted solid surface. Exp. Fluids 22 (6), 463472.
Deegan R. D., Brunet P. & Eggers J. 2008 Complexities of splashing. Nonlinearity 21 (1), C1C11.
Fezzaa K. & Wang Y. J. 2008 Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets. Phys. Rev. Lett. 100 (10), 104501.
Fuster D., Agbaglah G., Josserand C., Popinet S. & Zaleski S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41 (6), 065001.
Howison S. D., Ockendon J. R., Oliver J. M., Purvis R. & Smith F. T. 2005 Droplet impact on a thin fluid layer. J. Fluid Mech. 542, 123.
Josserand C. & Zaleski S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15 (6), 16501657.
Kiger K. T. & Duncan J. H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44, 563596.
Kolinski J. M., Rubinstein S. M., Mandre S., Brenner M. P., Weitz D. A. & Mahadevan L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.
Leal L. G. 1989 Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fluids A1, 124131.
Moore M. R., Ockendon H., Ockendon J. R. & Oliver J. M. 2014 Capillary and viscous perturbations to Helmholtz flows. J. Fluid Mech. 742, R1. doi:10.1017/jfm.2014.39.
Oguz H. N. & Prosperetti A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.
Popinet S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.
Popinet S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.
Rioboo R., Bauthier C., Conti J., Voue M. & De Coninck J. 2003 Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Exp. Fluids 35 (6), 648652.
Thoraval M.-J., Takehara K., Etoh T. G., Popinet S., Ray P., Josserand C., Zaleski S. & Thoroddsen S. T. 2012 von Karman vortex street within an impacting drop. Phys. Rev. Lett. 108 (26), 264506.
Thoraval M.-J., Takehara K., Etoh T. G. & Thoroddsen S. T. 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234258.
Thoroddsen S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.
Thoroddsen S. T., Etoh T. G. & Takehara K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
Thoroddsen S. T., Thoraval M. J., Takehara K. & Etoh T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106 (3), 034501.
Tryggvason G., Scardovelli R. & Zaleski S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.
Wang A. B. & Chen C. C. 2000 Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12 (9), 21552158.
Weiss D. A. & Yarin A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.
Worthington A. M. 1882 On impact with a liquid surface. Proc. Phys. Soc. Lond. 34, 217230.
Xu L., Zhang W. W. & Nagel S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.
Yarin A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.
Yarin A. L. & Weiss D. A. 1995 Impact of drops on solid-surfaces—self-similar capillary waves, and splashing as a new-type of kinematic discontinuity. J. Fluid Mech. 283, 141173.
Zhang L. V., Brunet P., Eggers J. & Deegan R. D. 2010 Wavelength selection in the crown splash. Phys. Fluids 22 (12), 122105.
Zhang L. V., Toole J., Fezzaa K. & Deegan R. D. 2012a Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.
Zhang L. V., Toole J., Fezzaa K. & Deegan R. D. 2012b Splashing from drop impact into a deep pool: multiplicity of jets and the failure of conventional scaling. J. Fluid Mech. 703, 402413.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Agbaglah et al. supplementary movie
Numerical simulation showing the bumping regime for We=700 and Re=4000

 Video (1.9 MB)
1.9 MB
VIDEO
Movies

Agbaglah et al. supplementary movie
Experimental movie showing the formation of a rolled up vortex sheet

 Video (692 KB)
692 KB
VIDEO
Movies

Agbaglah et al. supplementary movie
Numerical simulation showing a smooth one jet regime for We=700 and Re=500

 Video (1.9 MB)
1.9 MB
VIDEO
Movies

Agbaglah et al. supplementary movie
Numerical simulation showing the vortex shedding in the two jets regime for We=500 and Re=3500

 Video (2.0 MB)
2.0 MB

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 216 *
Loading metrics...

Abstract views

Total abstract views: 559 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.