Skip to main content Accessibility help

Dynamic mode decomposition of numerical and experimental data

  • PETER J. SCHMID (a1)


The description of coherent features of fluid flow is essential to our understanding of fluid-dynamical and transport processes. A method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment. The extracted dynamic modes, which can be interpreted as a generalization of global stability modes, can be used to describe the underlying physical mechanisms captured in the data sequence or to project large-scale problems onto a dynamical system of significantly fewer degrees of freedom. The concentration on subdomains of the flow field where relevant dynamics is expected allows the dissection of a complex flow into regions of localized instability phenomena and further illustrates the flexibility of the method, as does the description of the dynamics within a spatial framework. Demonstrations of the method are presented consisting of a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet passing between two cylinders.


Corresponding author

Email address for correspondence:


Hide All
Åkervik, E., Hœpffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global modes. J. Fluid Mech. 579, 305314.
Aubry, N. 1991 On the hidden beauty of the proper orthogonal decomposition. Theor. Comp. Fluid Dyn. 2, 339352.
Barbagallo, A., Sipp, D. & Schmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 150.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Bonnet, J.-P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp. Fluids 17, 307314.
DelSole, T. & Hou, A. Y. 1999 Empirical stochastic models for the dominant climate statistics of a general circulation model. J. Atmos. Sci. 56, 34363456.
Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. C. 1994 Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110, 82102.
Greenbaum, A. 1997 Iterative Methods for Solving Linear Systems. SIAM.
Hasselmann, K. 1988 POPs and PIPs: the reduction of complex dynamical systems using principal oscillations and interaction patterns. J. Geophys. Res. 93, 1097510988.
Hemon, P. & Santi, F. 2007 Simulation of a spatially correlated turbulent velocity field using biorthogonal decomposition. J. Wind Engng Ind. Aerodyn. 95, 2129.
Herzog, S. 1986 The large scale structure in the near-wall region of turbulent pipe flow. PhD dissertation, Department Mechanical Engineering, Cornell University.
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.
Lasota, A. & Mackey, M. C. 1994 Chaos, Fractals and Noise: Stochastic Aspects of Dynamics. Springer.
Lehoucq, R. B. & Scott, J. A. 1997 Implicitly restarted Arnoldi methods and subspace iteration. SIAM J. Matrix Anal. Appl. 23, 551562.
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic Press.
Mezić, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309325.
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzynski, M., Comte, P. & Tadmor, G. 2008 A finite-time thermodynamics formalism for unsteady flows. J. Non-Equilib. Thermodyn. 33, 103148.
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.
Penland, C. & Magoriam, T. 1993 Prediction of Niño 3 sea-surface temperatures using linear inverse modelling. J. Climate 6, 10671076.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.
Ruhe, A. 1984 Rational Krylov sequence methods for eigenvalue computation. Linear Algebr Appl. 58, 279316.
Schmid, P. J. 2007 Transition and transition control in a square cavity. In Advances in Turbulence XI (ed. Palma, J. M. L. M. & Silva Lopez, A.), pp. 562569. Springer Verlag.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.
Schmid, P. J., Li, L., Juniper, M. P. & Pust, O. 2010 Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. (in press).
Schmid, P. J. & Sesterhenn, J. L. 2008 Dynamic mode decomposition of numerical and experimental data. In Bull. Amer. Phys. Soc., 61st APS meeting, p. 208. San Antonio.
Schmit, R. F. & Glauser, M. N. 2009 Use of low-dimensional methods for wake flowfield estimation from dynamic strain. AIAA J. 43 (5), 11331136.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Math. 45, 561590.
von Storch, H., Bürger, G., Schnur, R. & von Storch, J. 1995 Principal oscillation pattern: a review. J. Climate 8, 377400.
Trefethen, L. N. & Bau, D. 1997 Numerical Linear Algebra. SIAM.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed