Skip to main content
    • Aa
    • Aa

Dynamic structure factor study of diffusion in strongly sheared suspensions


Diffusion of neutrally buoyant spherical particles in concentrated monodisperse suspensions under simple shear flow is investigated. We consider the case of non-Brownian particles in Stokes flow, which corresponds to the limits of infinite Péclet number and zero Reynolds number. Using an approach based upon ideas of dynamic light scattering we compute self- and gradient diffusion coefficients in the principal directions normal to the flow numerically from Accelerated Stokesian Dynamics simulations for large systems (up to 2000 particles). For the self-diffusivity, the present approach produces results identical to those reported earlier, obtained by probing the particles' mean-square displacements (Sierou & Brady, J. Fluid Mech. vol. 506, 2004 p. 285). For the gradient diffusivity, the computed coefficients are in good agreement with the available experimental results. The similarity between diffusion mechanisms in equilibrium suspensions of Brownian particles and in non-equilibrium non-colloidal sheared suspensions suggests an approximate model for the gradient diffusivity: ${\textsfbi D}^\triangledown\,{\approx}\,{\textsfbi D}^s/S^{eq}(0)$, where ${\textsfbi D}^s$ is the shear-induced self-diffusivity and $S^{eq}(0)$ is the static structure factor corresponding to the hard-sphere suspension at thermodynamic equilibrium.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 95 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.