Hostname: page-component-7dd5485656-dk7s8 Total loading time: 0 Render date: 2025-10-22T07:27:09.363Z Has data issue: false hasContentIssue false

Dynamical properties of ocean internal solitary waves: a study based on the modified intermediate long wave equation

Published online by Cambridge University Press:  20 October 2025

Di Yu
Affiliation:
State Key Laboratory of Ocean Sensing & Ocean College, Zhejiang University , Zhoushan 316021, PR China
Jinbao Song*
Affiliation:
State Key Laboratory of Ocean Sensing & Ocean College, Zhejiang University , Zhoushan 316021, PR China
*
Corresponding author: Jinbao Song, songjb@zju.edu.cn

Abstract

This study presents a modified intermediate long wave (mILW) equation derived from the Navier–Stokes equations via multi-scale analysis and perturbation expansion, aimed at describing internal solitary waves (ISWs) in finite-depth, stratified oceans. Compared to the classical ILW model, the proposed mILW equation incorporates cubic nonlinearities and captures the dynamical behaviour of large-amplitude ISWs more accurately. The equation reduces to the modified Korteweg–de Vries equation and modified Benjamin–Ono equations in the shallow- and deep-water limits, respectively, thus providing a unified framework across varying depth regimes. Soliton solutions are constructed analytically using Hirota’s bilinear method, and numerical simulations investigate wave–wave interactions, including rogue waves and Mach reflection. Furthermore, a smooth tanh-type density profile is adopted to reflect realistic stratification. Associated vertical modal structures and vertical velocity fields are analysed, and higher-order statistics (skewness and kurtosis) are introduced to reveal the density dependence of wave asymmetry. The results offer new insights into the nonlinear dynamics of ISWs, with implications for ocean mixing, energy transport and submarine acoustics.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abreu, E., Valencia-Guevara, J.C., Huacasi-Machaca, M. & Perez, J. 2024 A numerical scheme for doubly nonlocal conservation laws. Calcolo 61, 72.10.1007/s10092-024-00624-xCrossRefGoogle Scholar
Adem, A.R. & Khalique, C.M. 2013 Exact solutions and conservation laws of a two-dimensional integrable generalization of the Kaup–Kupershmidt equation. J. Appl. Maths 2013, 647313.Google Scholar
Benjamin, T.B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241270.10.1017/S0022112066001630CrossRefGoogle Scholar
Benjamin, T.B. 1967 Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559592.10.1017/S002211206700103XCrossRefGoogle Scholar
Cai, S., Long, X. & Gan, Z. 2019 A numerical study of internal solitary wave evolution over a slope-shelf topography. J. Fluid Mech. 864, 123.Google Scholar
Cebeci, T. & Bradshaw, P. 1984 Conservation equations for mass, momentum, and energy. In Physical and Computational Aspects of Convective Heat Transfer, pp. 1940. Springer, https://doi.org/10.1007/978-3-662-02411-9_2.CrossRefGoogle Scholar
Cullen, J. & Ivanov, R. 2020 On the intermediate long wave propagation for internal waves in the presence of currents. Eur. J. Mech. B/Fluids 84, 325333.10.1016/j.euromechflu.2020.07.001CrossRefGoogle Scholar
Fedele, F., Brennan, J., Ponce de León, S., Dudley, J. & Dias, F. 2016 Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 6, 27715.10.1038/srep27715CrossRefGoogle ScholarPubMed
Gardner, C.S. & Morikawa, G.K. 1965 The effect of temperature on the width of a small‐amplitude, solitary wave in a collision‐free plasma. Commun. Pure Appl. Maths 18, 3549.CrossRefGoogle Scholar
Global Ocean Associates. 2004 An Atlas of Internal Solitary-like Waves and their Properties. https://www.internalwaveatlas.com/.Google Scholar
Grimshaw, R., Pelinovsky, E. & Poloukhina, O. 2002 Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 9, 221235.10.5194/npg-9-221-2002CrossRefGoogle Scholar
Guo, C. & Chen, X. 2014 A review of internal solitary wave dynamics in the northern South China Sea. Prog. Oceanogr. 121, 723.CrossRefGoogle Scholar
Han, X.F., Jin, J.R., Dong, H.H. & Fu, L. 2023 Soliton interactions and Mach reflection in gas bubbles–liquid mixures. Phys. Fluids 35, 101901.10.1063/5.0168583CrossRefGoogle Scholar
Helfrich, K.R. & Melville, W.K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.10.1146/annurev.fluid.38.050304.092129CrossRefGoogle Scholar
Jia, Y.G., Tian, Z.C., Shi, X.F., Liu, J.P., Chen, J.X., Liu, X.L., Ye, R.J., Ren, Z.Y. & Tian, J.W. 2019 Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea. Sci. Rep. 9, 12137.10.1038/s41598-019-47886-yCrossRefGoogle ScholarPubMed
Joseph, R.I. 1977 Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen. 10, L225.10.1088/0305-4470/10/12/002CrossRefGoogle Scholar
Klemas, V. & Yan, X.H. 2014 Subsurface and deeper ocean remote sensing from satellites: an overview and new results. Prog. Oceanogr. 122, 19.CrossRefGoogle Scholar
Korteweg, D.J. & de Vries, G. 1895 On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary wave. Philos. Mag. 39, 422443.CrossRefGoogle Scholar
Kubota, T., Ko, D.R.S. & Dobbs, L.D. 1978 Weakly-nonlinear long internal waves in a stratified fluid of finite depth. J. Hydronaut. 12, 157165.10.2514/3.63127CrossRefGoogle Scholar
Lamb, K.G. & Xiao, W.T. 2014 Internal solitary waves shoaling onto a shelf: comparisons of weakly-nonlinear and fully nonlinear models for hyperbolic-tangent stratifications. Ocean Model. 78, 1734.10.1016/j.ocemod.2014.02.005CrossRefGoogle Scholar
Lamb, K.G. & Yan, L. 1996 The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory. J. Phys. Oceanogr. 26, 27122734.2.0.CO;2>CrossRefGoogle Scholar
Li, G.P. 2024 Deep-water and shallow-water limits of the intermediate long wave equation. Nonlinearity 37, 075001.10.1088/1361-6544/ad4843CrossRefGoogle Scholar
Li, J., Xu, Z.H., Hao, Z.J., You, J., Zhang, P.W. & Yin, B.S. 2023 Internal lee wave generation from geostrophic flow in the northwestern Pacific Ocean. J. Phys. Oceanogr. 53, 26332650.10.1175/JPO-D-23-0035.1CrossRefGoogle Scholar
Matsuno, Y. 1979 Exact multi-soliton solution for nonlinear waves in a stratified fluid of finite depth. Phys. Lett. A 74, 233235.CrossRefGoogle Scholar
McAllister, M.L., Draycott, S., Calvert, R., Davey, T., Dias, F. & van den Bremer, T.S. 2024 Three-dimensional wave breaking. Nature 633, 601607.10.1038/s41586-024-07886-zCrossRefGoogle ScholarPubMed
Michele, S. & Renzi, E. 2020 Effects of the sound speed vertical profile on the evolution of hydroacoustic waves. J. Fluid Mech. 883, A28.10.1017/jfm.2019.907CrossRefGoogle Scholar
Naumkin, P.I. & Sánchez-Suárez, I. 2018 On the modified intermediate long-wave equation. Nonlinearity 31, 9801008.10.1088/1361-6544/aa9a81CrossRefGoogle Scholar
Ono, H. 1975 Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 10821091.10.1143/JPSJ.39.1082CrossRefGoogle Scholar
Ren, Y., Dong, H., Zhao, B. & Fu, L. 2023 Higher-order Benjamin–Ono model for ocean internal solitary waves and its related properties. Axioms 12, 969.10.3390/axioms12100969CrossRefGoogle Scholar
Vishnu Priya, N., Thulasidharan, K. & Senthilvelan, M. 2025 Hybrid solutions of real and complex modified Korteveg–de Vries equations and their predictions through deep learning algorithm. Nonlinear Dyn. 113, 1358513613.10.1007/s11071-024-10833-2CrossRefGoogle Scholar
Vlasenko, V. & Stashchuk, N. 2015 Three-dimensional shoaling of large-amplitude internal waves. J. Geophys. Res. Oceans 120, 79057924.Google Scholar
Xu, J.X., Chen, Z.W., Xie, J.S. & Cai, S.Q. 2016 On generation and evolution of seaward propagating internal solitary waves in the northwestern South China Sea. Commun. Nonlinear Sci. Numer. Simul. 32, 122136.10.1016/j.cnsns.2015.08.013CrossRefGoogle Scholar
Yu, D., Fu, L. & Yang, H.W. 2021 A novel dynamic model and the oblique interaction for ocean internal solitary waves. Nonlinear Dyn. 108, 491504.10.1007/s11071-022-07201-3CrossRefGoogle Scholar
Yu, D. & Song, J.B. 2024 The modified cubic Benjamin–Ono equation describing internal solitary waves in the deep ocean and its related properties. Phys. Fluids 36, 067107.10.1063/5.0210945CrossRefGoogle Scholar
Zeidan, D., Pandey, M. & Govekar, S. 2022 Interaction of shock and discontinuity waves at the stellar surfaces. Phys. Fluids 34, 066111.10.1063/5.0091013CrossRefGoogle Scholar
Zheng, Q., Klemas, V. & Yan, X.H. 1997 Digital orthorectification of space shuttle coastal ocean photographs. Intl J. Remote Sens. 18, 197211.10.1080/014311697219367CrossRefGoogle Scholar
Zhi, C.H., Fan, W.H. & You, Y.X. 2024 Assessment of unidirectional internal solitary wave models in a two-layer fluid system through an improved experimental method. Ocean Engng 312, 119046.10.1016/j.oceaneng.2024.119046CrossRefGoogle Scholar