Hostname: page-component-7dd5485656-zlgnt Total loading time: 0 Render date: 2025-10-27T13:20:11.691Z Has data issue: false hasContentIssue false

Dynamics of an internally actuated weakly elastic sphere translating parallel to a rigid wall

Published online by Cambridge University Press:  23 October 2025

Shashikant Verma
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Ropar , 140001, India
Bhagavatula Dinesh
Affiliation:
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
Navaneeth Kizhakke Marath*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Ropar , 140001, India Centre of Research for Energy Efficiency and Decarbonization (CREED), Indian Institute of Technology Ropar, 140001, India
*
Corresponding author: Navaneeth Kizhakke Marath, navaneeth@iitrpr.ac.in

Abstract

We analyse the dynamics of a weakly elastic spherical particle translating parallel to a rigid wall in a quiescent Newtonian fluid in the Stokes limit. The particle motion is constrained parallel to the wall by applying a point force and a point torque at the centre of its undeformed shape. The particle is modelled using the Navier elasticity equations. The series solutions to the Navier and the Stokes equations are used to obtain the displacement and velocity fields in the solid and fluid, respectively. The point force and the point torque are calculated as series in small parameters $\alpha$ and $1/H$, using the domain perturbation method and the method of reflections. Here, $\alpha$ is the measure of elastic strain induced in the particle resulting from the fluid’s viscous stress and $H$ is the non-dimensional gap width, defined as the ratio of the distance of the particle centre from the wall to its radius. The results are presented up to $\textit {O}(1/H^3)$ and $\textit {O}(1/H^2)$, assuming $\alpha \sim 1/H$, for cases where gravity is aligned and non-aligned with the particle velocity, respectively. The deformed shape of the particle is determined by the force distribution acting on it. The hydrodynamic lift due to elastic effects (acting away from the wall) appears at $\textit {O}(\alpha /H^2)$ in the former case. In an unbounded domain, the elastic effects in the latter case generate a hydrodynamic torque at O($\alpha$) and a drag at O($\alpha ^2$). Conversely, in the former case, the torque is zero, while the drag still appears at O($\alpha ^2$).

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anand, P. & Subramanian, G. 2023 Inertial migration of a sphere in plane couette flow. J. Fluid Mech. 977, A33.10.1017/jfm.2023.975CrossRefGoogle Scholar
Barthes-Biesel, D. 2016 Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 2552.CrossRefGoogle Scholar
Bertin, V., Amarouchene, Y., Raphaël, E. & Salez, T. 2022 Soft-lubrication interactions between a rigid sphere and an elastic wall. J. Fluid Mech. 933, A23.10.1017/jfm.2021.1063CrossRefGoogle Scholar
Bureau, L., Coupier, G. & Salez, T. 2023 Lift at low reynolds number. Eur. Phys. J. E 46 (11), 111.10.1140/epje/s10189-023-00369-5CrossRefGoogle ScholarPubMed
Chaffey, C.E., Brenner, H. & Mason, S.G. 1965 Particle motions in sheared suspensions: xviii: wall migration (theoretical). Rheol. Acta 4 (1), 6472.10.1007/BF01968738CrossRefGoogle Scholar
Daddi-Moussa-Ider, A., Rallabandi, B., Gekle, S. & Stone, H.A. 2018 Reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane. Phys. Rev. Fluids 3 (8), 084101.10.1103/PhysRevFluids.3.084101CrossRefGoogle Scholar
Dean, W.R. & O’Neill, M.E. 1963 A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika 10 (1), 1324.10.1112/S0025579300003314CrossRefGoogle Scholar
Doddi, S.K. & Bagchi, P. 2009 Prosenjit 2009 Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79 (4), 046318.10.1103/PhysRevE.79.046318CrossRefGoogle Scholar
Faxen, H. 1923 Die bewegung einer starren kugel längs der achse eines mit zäher flüssigkeit gefüllten rohres. Arkiv Matemetik Astronomi och Fysik 17, 128.Google Scholar
Finney, S.M., Hennessy, G.M., Münch, A. & Waters, S.L. 2024 The impact of confinement on the deformation of an elastic particle under axisymmetric tube flow. Ima J. Appl. Math. 89 (3), 498532.10.1093/imamat/hxae022CrossRefGoogle Scholar
Goldman, A.J., Cox, R.G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall – I motion through a quiescent fluid. Chem. Eng. Sci. 22 (4), 637651.CrossRefGoogle Scholar
Guazzelli, E. & Morris, J.F. 2011 A Physical Introduction to Suspension Dynamics. vol. 45. Cambridge University Press.10.1017/CBO9780511894671CrossRefGoogle Scholar
Ho, B.P. & Leal, L.G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (2), 365400.10.1017/S0022112074001431CrossRefGoogle Scholar
Johns, L.E. & Narayanan, R. 2002 Interfacial Instability. Springer Science & Business Media.Google Scholar
Kargar-Estahbanati, A. & Rallabandi, B. 2021 Lift forces on three-dimensional elastic and viscoelastic lubricated contacts. Phys. Rev. Fluids 6 (3), 034003.CrossRefGoogle Scholar
Kim, B.-S., Qiu, J.-M., Wang, J.-P. & Taton, T.A. 2005 Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett. 5 (10), 19871991.10.1021/nl0513939CrossRefGoogle ScholarPubMed
Kim, S. & Karrila, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Courier Corporation.Google Scholar
Kushch, V. 2013 Micromechanics of Composites: Multipole Expansion Approach. Butterworth-Heinemann.Google Scholar
Leal, L.G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.10.1146/annurev.fl.12.010180.002251CrossRefGoogle Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.10.1017/CBO9780511800245CrossRefGoogle Scholar
Li, S., Yu, H., Li, T.-D., Chen, Z., Deng, W., Anbari, A. & Fan, J. 2020 Understanding transport of an elastic, spherical particle through a confining channel. Appl. Phys. Lett. 116 (10), 103705.10.1063/1.5139887CrossRefGoogle Scholar
Magnaudet, J., Takagi, S.H.U. & Legendre, D. 2003 Drag, deformation and lateral migration of a buoyant drop moving near a wall. J. Fluid Mech. 476, 115157.10.1017/S0022112002002902CrossRefGoogle Scholar
Małysa, K. & Van De Ven, T.G.M. 1986 Rotational and translational motion of a sphere parallel to a wall. Int. J. Multiphas. Flow 12 (3), 459468.CrossRefGoogle Scholar
Matas, J.P., Morris, J.F. & Guazzelli, E. 2004 Lateral forces on a sphere. Oil Gas Sci. Technol. 59 (1), 5970.CrossRefGoogle Scholar
Moerland, C.P., Van IJzendoorn, L.J. & Prins, M.W.J. 2019 Rotating magnetic particles for lab-on-chip applications – a comprehensive review. Lab Chip 19 (6), 919933.10.1039/C8LC01323CCrossRefGoogle ScholarPubMed
Murata, T. 1980 On the deformation of an elastic particle falling in a viscous fluid. J. Phys. Soc. Japan 48 (5), 17381745.10.1143/JPSJ.48.1738CrossRefGoogle Scholar
Murata, T. 1981 Deformation of an elastic particle suspended in an arbitrary flow field. J. Phys. Soc. Japan 50 (3), 10091016.10.1143/JPSJ.50.1009CrossRefGoogle Scholar
Nakayama, S., Yamashita, H., Yabu, T., Itano, T. & Sugihara-Seki, M. 2019 Three regimes of inertial focusing for spherical particles suspended in circular tube flows. J. Fluid Mech. 871, 952969.10.1017/jfm.2019.325CrossRefGoogle Scholar
Nasouri, B., Khot, A. & Elfring, G.J. 2017 Elastic two-sphere swimmer in stokes flow. Phys. Rev. Fluids 2 (4), 043101.10.1103/PhysRevFluids.2.043101CrossRefGoogle Scholar
Nix, S., Imai, Y., Matsunaga, D., Yamaguchi, T. & Ishikawa, T. 2014 Lateral migration of a spherical capsule near a plane wall in stokes flow. Phys. Rev. E 90 (4), 043009.10.1103/PhysRevE.90.043009CrossRefGoogle Scholar
Noichl, I. & Schönecker, C. 2022 Dynamics of elastic, nonheavy spheres sedimenting in a rectangular duct. Soft Matt. 18 (12), 24622472.10.1039/D1SM01789FCrossRefGoogle Scholar
O’Neill, M.E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (1), 6774.10.1112/S0025579300003508CrossRefGoogle Scholar
Peng, S., Zhang, M., Niu, X., Wen, W., Sheng, P., Liu, Z. & Shi, J. 2008 Magnetically responsive elastic microspheres. Appl. Phys. Lett. 92 (1).10.1063/1.2830620CrossRefGoogle Scholar
Philippova, O., Barabanova, A., Molchanov, V. & Khokhlov, A. 2011 Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur. Polym. J. 47 (4), 542559.10.1016/j.eurpolymj.2010.11.006CrossRefGoogle Scholar
Rallabandi, B. 2024 Fluid-elastic interactions near contact at low reynolds number. Annu. Rev. Fluid Mech. 56 (1), 491519.10.1146/annurev-fluid-120720-024426CrossRefGoogle Scholar
Rallabandi, B., Oppenheimer, N., Zion, B., Yah, M. & Stone, H.A. 2018 Membrane-induced hydroelastic migration of a particle surfing its own wave. Nat. Phys. 14 (12), 12111215.10.1038/s41567-018-0272-zCrossRefGoogle Scholar
Rallabandi, B., Saintyves, B., Jules, T., Salez, T., Schönecker, C., Mahadevan, L. & Stone, H.A. 2017 Rotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids 2 (7), 074102.CrossRefGoogle Scholar
Safarik, I., Safarikova, M. & Forsythe, S.J. 1995 The application of magnetic separations in applied microbiology.10.1111/j.1365-2672.1995.tb03102.xCrossRefGoogle Scholar
Safarikova, M. & Safarik, I. 2001 The application of magnetic techniques in biosciences. Phys. Separation Sci. Engine 10 (4), 223252.10.1155/2001/57434CrossRefGoogle Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.10.1017/S0022112065000824CrossRefGoogle Scholar
Saintyves, B., Jules, T., Salez, T. & Mahadevan, L. 2016 Self-sustained lift and low friction via soft lubrication. Proc. Natl. Acad. Sci. 113 (21), 58475849.10.1073/pnas.1525462113CrossRefGoogle ScholarPubMed
Secomb, T.W., Skalak, R., Özkaya, N. & Gross, J.F. 1986 Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405423.CrossRefGoogle Scholar
Segre, G. & Silberberg, A. 1961 Radial particle displacements in poiseuille flow of suspensions. Nature 189 (4760), 209210.10.1038/189209a0CrossRefGoogle Scholar
Sekimoto, K. & Leibler, L. 1993 A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. Europhys. Lett. 23 (2), 113.CrossRefGoogle Scholar
Skotheim, J.M. & Mahadevan, L. 2005 Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17 (9).10.1063/1.1985467CrossRefGoogle Scholar
Song, Y., Li, D. & Xuan, X. 2023 Recent advances in multi-mode microfluidic separation of particles and cells. Electrophoresis.10.1002/elps.202300027CrossRefGoogle Scholar
Tam, C.K.W. & Hyman, W.A. 1973 Transverse motion of an elastic sphere in a shear field. J. Fluid Mech. 59 (1), 177185.Google Scholar
Urzay, J., Smith, L., Stefan, G. & Glover, B.J. 2007 The elastohydrodynamic force on a sphere near a soft wall. Phys. Fluids 19 (10).10.1063/1.2799148CrossRefGoogle Scholar
Vasseur, P. & Cox, R.G. 1976 The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78 (2), 385413.10.1017/S0022112076002498CrossRefGoogle Scholar
Villone, M.M. & Maffettone, P.L. 2019 Dynamics, rheology, and applications of elastic deformable particle suspensions: a review. Rheol. Acta 58, 109130.CrossRefGoogle Scholar
Wu, T., Yang, Z., Hu, R., Chen, Y.-F., Zhong, H., Yang, L. & Jin, W. 2021 Film entrainment and microplastic particles retention during gas invasion in suspension-filled microchannels. Water Res. 194, 116919.10.1016/j.watres.2021.116919CrossRefGoogle ScholarPubMed