Skip to main content
×
Home
    • Aa
    • Aa

Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets

  • A. M. ARDEKANI (a1), V. SHARMA (a1) and G. H. McKINLEY (a1)
Abstract

The spatiotemporal evolution of a viscoelastic jet depends on the relative magnitude of capillary, viscous, inertial and elastic stresses. The interplay of capillary and elastic stresses leads to the formation of very thin and stable filaments between drops, or to ‘beads-on-a-string’ structure. In this paper, we show that by understanding the physical processes that control different stages of the jet evolution it is possible to extract transient extensional viscosity information even for very low viscosity and weakly elastic liquids, which is a particular challenge in using traditional rheometers. The parameter space at which a forced jet can be used as an extensional rheometer is numerically investigated by using a one-dimensional nonlinear free-surface theory for Oldroyd-B and Giesekus fluids. The results show that even when the ratio of viscous to inertio-capillary time scales (or Ohnesorge number) is as low as Oh ~ 0.02, the temporal evolution of the jet can be used to obtain elongational properties of the liquid.

Copyright
Corresponding author
Email address for correspondence: ardekani@mit.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. L. Anna , G. H. McKinley , D. A. Nguyen , T. Sridhar , S. J. Muller , J. Huang & D. F. James 2001 An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J. Rheol. 45, 83114.

O. A. Basaran 1992 Nonlinear oscillation of viscous liquid drops. J. Fluid Mech. 241, 169198.

H. F. Bauer & W. Eidel 1987 Vibration of a visco-elastic spherical immiscible liquid system. Z. Angew. Math. Mech. 67, 525535.

P. P. Bhat , S. Appathurai , M. T. Harris , M. Pasquali , G. H. McKinley & O. A. Basaran 2010 Formation of beads-on-a-string structures during breakup of viscoelastic filaments. Nature Phys. 6 (8), 625631.

D. W. Bousfield , R. Keunings , G. Marrucci & M. M. Denn 1986 Nonlinear analysis of the surface-tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21 (1), 7997.

G. Brenn , Z. Liu & F. Durst 2000 Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets. Intl J. Multiphase Flow 26, 16211644.

C. Clasen , J. Eggers , M. A. Fontelos , J. Li & G. H. McKinley 2006 The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.

J. Eggers 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.

V. M. Entov & E. J. Hinch 1997 Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J. Non-Newtonian Fluid Mech. 72 (1), 3153.

V. M. Entov & A. L. Yarin 1984 Influence of elastic stresses on the capillary breakup of dilute polymer solutions. Fluid Dyn. 19, 2129.

M. A. Fontelos & J. Li 2004 On the evolution and rupture of filaments in Giesekus and FENE models. J. Non-Newtonian Fluid Mech. 118 (1), 116.

M. G. Forest & Q. Wang 1990 Change-of-type behavior in viscoelastic slender jet models. J. Theor. Comput. Fluid Dyn. 2, 125.

H. Giesekus 1982 A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid Mech. 11 (1–2), 69109.

M. Goldin , J. Yerushalmi , R. Pfeffer & R. Shinnar 1969 Breakup of a laminar capillary jet of a viscoelastic fluid. J. Fluid Mech. 38, 689711.

S. D. Hoath , I. M. Hutchings , G. D. Martin , T. R. Tuladhar , M. R. Mackley & D. Vadillo 2009 Links between ink rheology, drop-on-demand jet formation, and printability. J. Imaging Sci. Technol. 53, 041208.

D. B. Khismatullin & A. Nadim 2001 Shape oscillations of a viscoelastic drop. Phys. Rev. E 63 (6, part 1), 061508.

J. Li & M. A. Fontelos 2003 Drop dynamics on the beads-on-string structure for viscoelastic jets: a numerical study. Phys. Fluids 15 (4), 922937.

S. Middleman 1965 Stability of a viscoelastic jet. Chem. Engng Sci. 20, 10371040.

N. F. Morrison & O. G. Harlen 2010 Viscoelasticity in inkjet printing. Rheol. Acta 49, 619632.

L. Rayleigh 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.

P. Schümmer & K. H. Tebel 1983 A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331347.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 96 *
Loading metrics...

Abstract views

Total abstract views: 270 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.