Skip to main content Accessibility help

Dynamics of drop impact on solid surfaces: evolution of impact force and self-similar spreading

  • Leonardo Gordillo (a1) (a2), Ting-Pi Sun (a1) and Xiang Cheng (a1)


We investigate the dynamics of drop impacts on dry solid surfaces. By synchronising high-speed photography with fast force sensing, we simultaneously measure the temporal evolution of the shape and impact force of impacting drops over a wide range of Reynolds numbers ( $\mathit{Re}$ ). At high $\mathit{Re}$ , when inertia dominates the impact processes, we show that the early time evolution of impact force follows a square-root scaling, quantitatively agreeing with a recent self-similar theory. This observation provides direct experimental evidence on the existence of upward propagating self-similar pressure fields during the initial impact of liquid drops at high $\mathit{Re}$ . When viscous forces gradually set in with decreasing $\mathit{Re}$ , we analyse the early time scaling of the impact force of viscous drops using a perturbation method. The analysis quantitatively matches our experiments and successfully predicts the trends of the maximum impact force and the associated peak time with decreasing $\mathit{Re}$ . Furthermore, we discuss the influence of viscoelasticity on the temporal signature of impact forces. Last but not least, we also investigate the spreading of liquid drops at high $\mathit{Re}$ following the initial impact. Particularly, we find an exact parameter-free self-similar solution for the inertia-driven drop spreading, which quantitatively predicts the height of spreading drops at high $\mathit{Re}$ . The limit of the self-similar approach for drop spreading is also discussed. As such, our study provides a quantitative understanding of the temporal evolution of impact forces across the inertial, viscous and viscoelastic regimes and sheds new light on the self-similar dynamics of drop-impact processes.


Corresponding author

Email addresses for correspondence:,


Hide All
Agbaglah, G., Josserand, C. & Zaleski, S. 2013 Longitudinal instability of a liquid rim. Phys. Fluids 25, 022103.
Barenblatt, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press.
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
Biancé, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.
Brodie, H. J. 1951 The splash-cup dispersal mechanism in plants. Can. J. Bot. 29, 224234.
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.
Deng, T., Varanasi, K. K., Hsu, M., Bhate, N., Keimel, C., Stein, J. & Blohm, M. 2009 Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 94, 133109.
Dickerson, A. K., Shankles, P. G., Madhavan, N. M. & Hu, D. L. 2012 Mosquitoes survive raindrop collisions by virtue of their low mass. Proc. Natl Acad. Sci. USA 109, 98229827.
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.
Eggers, J., Fontelos, M. A, Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.
Gamero-Castano, M., Torrents, A., Valdevit, L. & Zheng, J.-G. 2010 Pressure-induced amorphization in silicon caused by the impact of electrosprayed nanodroplets. Phys. Rev. Lett. 105, 145701.
Gart, S., Mates, J. E., Megaridis, C. M. & Jung, S. 2015 Droplet impacting a cantilever: a leaf-raindrop system. Phys. Rev. Appl. 3, 044019.
Grinspan, A. S. & Gnanamoorthy, R. 2010 Impact force of low velocity liquid droplets measured using piezoelectric PVDF film. Colloid. Surface A 356, 162168.
Hammitt, F. G. 1980 Cavitation and Multiphases Flow Phenomena. McGraw-Hill.
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.
Joung, Y. S. & Ruie, C. R. 2015 Aerosol generation by raindrop impact on soil. Nat. Commun. 6, 6083.
Klaseboer, E., Manica, R. & Chan, D. Y. C. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113, 194501.
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.
Krechetnikov, R. & Homsy, G. M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.
Kwon, H.-M., Paxson, A. T., Varanasi, K. K. & Patankar, N. A. 2011 Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces. Phys. Rev. Lett. 106, 036102.
Laan, N., de Bruin, K. G., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2, 044018.
Lagubeau, G., Fontelos, M. A., Josserand, C., Maurel, A., Pagneux, V. & Petitjeans, P. 2012 Spreading dynamics of drop impacts. J. Fluid Mech. 713, 5060.
Landau, L. D. & Lifshitz, E. M. 1986 Theory of Elasticity, 3rd edn. Butterworth-Heinemann.
Li, J., Zhang, B., Guo, P. & Lv, Q. 2014 Impact force of a low speed water droplet colliding on a solid surface. J. Appl. Phys. 116, 214903.
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.
Mongruel, A., Daru, V., Feuillebois, F. & Tabakova, S. 2009 Early post-impact time dynamics of viscous drops onto a solid dry surface. Phys. Fluids 21, 032101.
Nearing, M. A., Bradford, J. M. & Holtz, R. D. 1986 Measurement of force versus time relations for waterdrop impact. Soil Sci. Soc. Am. J. 50, 15321536.
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 96135.
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.
Rioboo, R., Marengo, M. & Tropea, C. 2002 Time evolution of liquid drop impact on solid dry surfaces. Exp. Fluids 33, 112124.
Roisman, I. V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21, 052104.
Roisman, I. V., Berberović, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21, 052103.
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 14111430.
Savic, P. & Boult, G. T.1955 The fluid flow associated with the impact of liquid drops with solid surfaces. Rep. No. MT-26. Natl Res. Council Canada.
Soto, D., de Larivière, A. B., Boutillon, X., Clanet, C. & Quéré, D. 2014 The force of impacting rain. Soft Matt. 10, 49294934.
Tabakova, S., Feuillebois, F., Mongruel, A., Daru, V. & Radev, St. 2012 First stages of drop impact on a dry surface: asymptotic model. Z. Angew. Math. Phys. 63, 313330.
Thanh-Vinh, N., Matsumoto, K. & Shimoyama, I. 2016 Pressure distribution on the contact area during the impact of a droplet on a textured surface. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 177180. IEEE.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. Parabolic Press.
Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D. & Sun, C. 2015 Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matt. 11, 17081722.
Wagner, H. 1932 Uber stoss- und gleitvorgange and der oberflache von flussigkeiten. Z. Angew. Math. Mech. 12, 193215.
Wildeman, S., Visser, C. W., Sun, C. & Lohse, D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636655.
Worthington, A. M. 1876a A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 498503.
Worthington, A. M. 1876b On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261272.
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.
Zhang, B., Li, J., Guo, P. & Lv, Q. 2017 Experimental studies on the effect of Reynolds and Weber numbers on the impact forces of low-speed droplets colliding with a solid surface. Exp. Fluids 58, 125.
Zhao, R., Zhang, Q., Tjugito, H. & Cheng, X. 2015a Granular impact cratering by liquid drops: understanding raindrop imprints through an analogy to asteroid strikes. Proc. Natl Acad. Sci. USA 112, 342347.
Zhao, S. C., de Jong, R. & van der Meer, D. 2015b Raindrop impact on sand: a dynamic explanation of crater morphologies. Soft Matt. 11, 65626568.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Dynamics of drop impact on solid surfaces: evolution of impact force and self-similar spreading

  • Leonardo Gordillo (a1) (a2), Ting-Pi Sun (a1) and Xiang Cheng (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.