Hostname: page-component-6bb9c88b65-vpjdr Total loading time: 0 Render date: 2025-07-20T06:01:23.522Z Has data issue: false hasContentIssue false

Dynamics of inviscid droplets on fibres: from instability to oscillations

Published online by Cambridge University Press:  14 May 2025

Fei Zhang
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Shuguang Zhao
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Xinping Zhou*
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
*
Corresponding author: Xinping Zhou, xpzhou08@hust.edu.cn

Abstract

We explore the instability and oscillation dynamics of barrel-shaped droplets on cylindrical fibres, contributing to a deeper understanding of fibre–droplet interactions critical to both natural systems and industrial applications. Unlike sessile droplets on flat surfaces, droplets on fibres exhibit unique behaviours due to the curvature of the fibre, such as transitions from axisymmetric (barrel) to non-axisymmetric (clamshell) shapes governed by droplet volume, contact angle and fibre radius. Using a linear inviscid theory, we compute the frequency spectrum of barrel-shaped droplets and identify stability thresholds for the barrel-to-clamshell transition by examining the first rocking mode, with a focus on the role of contact line conditions. This analysis resolves experimental anomalies concerning the stability of half-barrel-shaped droplets on hydrophobic fibres. Our findings also reveals diverse frequency spectra: droplets on thin fibres exhibit Rayleigh–Lamb-like spectral features, while those on thicker fibres show reduced sensitivity to azimuthal wavenumber. Interestingly, the instability of sectoral modes on thick fibres resembles the Rayleigh–Plateau instability of static rivulets, with fibre curvature slightly reducing growth rates at small axial wavenumbers but increasing them at larger ones.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Basaran, O.A. & DePaoli, D.W. 1994 Nonlinear oscillations of pendant drops. Phys. Fluids 6 (9), 29232943.CrossRefGoogle Scholar
Bhattacharya, S. 2016 Interfacial wave dynamics of a drop with an embedded bubble. Phys. Rev. E 93 (2), 023119.CrossRefGoogle ScholarPubMed
Bick, A., Boulogne, F., Sauret, A. & Stone, H.A. 2015 Tunable transport of drops on a vibrating inclined fiber. Appl. Phys. Lett. 107 (18), 181604.CrossRefGoogle Scholar
Bintein, P.-B., Bense, H., Clanet, C. & Quéré, D. 2019 Self-propelling droplets on fibres subject to a crosswind. Nat. Phys. 15 (10), 10271032.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2013 Coupled oscillations of deformable spherical-cap droplets. part 1. inviscid motions. J. Fluid Mech. 714, 312335.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2014 Dynamics of sessile drops. part 1. inviscid theory. J. Fluid Mech. 760, 538.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2015 Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47 (1), 539568.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2018 Static rivulet instabilities: varicose and sinuous modes. J. Fluid Mech. 837, 819838.CrossRefGoogle Scholar
Brakke, K.A. 1992 The surface evolver. Expl Maths 1 (2), 141165.CrossRefGoogle Scholar
Carroll, B.J. 1986 Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity. a theory for the roll-up process. Langmuir 2 (2), 248250.CrossRefGoogle Scholar
Cazaubiel, A. & Carlson, A. 2023 Influence of wind on a viscous liquid film flowing down a thread. Phys. Rev. Fluids 8 (5), 054002.CrossRefGoogle Scholar
Chang, C.-T., Bostwick, J.B., Steen, P.H. & Daniel, S. 2013 Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops. Phys. Rev. E 88 (2), 023015.CrossRefGoogle ScholarPubMed
Davis, S.H. 1980 Moving contact lines and rivulet instabilities. part 1. the static rivulet. J. Fluid Mech. 98 (2), 225242.CrossRefGoogle Scholar
Davoudi, M., Amrei, M.M., Tafreshi, H.V. & Chase, G.G. 2018 Measurement of inflection angle and correlation of shape factor of barrel-shaped droplets on horizontal fibers. Separation Purification Technol. 204, 127132.CrossRefGoogle Scholar
Del Rıo, O.I. & Neumann, A.W. 1997 Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J. Colloid Interface Sci. 196 (2), 136147.Google Scholar
Ding, D. & Bostwick, J.B. 2022 Pressure modes of the oscillating sessile drop. J. Fluid Mech. 944, R1.CrossRefGoogle Scholar
Duprat, C. 2022 Moisture in textiles. Annu. Rev. Fluid Mech. 54 (1), 443467.CrossRefGoogle Scholar
Eral, H.B., de Ruiter, J., de Ruiter, R., Oh, J.M., Semprebon, C., Brinkmann, M. & Mugele, F. 2011 Drops on functional fibers: from barrels to clamshells and back. Soft Matt. 7 (11), 51385143.CrossRefGoogle Scholar
de Gennes, P.-G., Brochard-Wyart, F., Quéré, D., et al. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.CrossRefGoogle Scholar
Gillette, R.D. & Dyson, D.C. 1971 Stability of fluid interfaces of revolution between equal solid circular plates. J. Chem. Engng 2 (1), 4454.CrossRefGoogle Scholar
Gupta, A., Konicek, A.R., King, M.A., Iqtidar, A., Yeganeh, M.S. & Stone, H.A. 2021 Effect of gravity on the shape of a droplet on a fiber: nearly axisymmetric profiles with experimental validation. Phys. Rev. Fluids 6 (6), 063602.CrossRefGoogle Scholar
Ju, J., Xiao, K., Yao, X., Bai, H. & Jiang, L. 2013 Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv. Mater. 25 (41), 59375942.CrossRefGoogle ScholarPubMed
Kern, V.R. & Carlson, A. 2024 Twisted fibers enable drop flow control and enhance fog capture. Proc. Natl. Acad. Sci. USA 121 (32), e2402252121.CrossRefGoogle ScholarPubMed
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Liang, Y.-E., Tsao, H.-K. & Sheng, Y.-J. 2015 Drops on hydrophilic conical fibers: gravity effect and coexistent states. Langmuir 31 (5), 17041710.CrossRefGoogle ScholarPubMed
Lorenceau, E. & Quéré, D. 2004 Drops on a conical wire. J. Fluid Mech. 510, 2945.CrossRefGoogle Scholar
Lyubimov, D.V., Lyubimova, T.P. & Shklyaev, S.V. 2006 Behavior of a drop on an oscillating solid plate. Phys. Fluids 18 (1), 012101.CrossRefGoogle Scholar
McHale, G., Käb, N., Newton, M. & Rowan, S. 1997 Wetting of a high-energy fiber surface. J. Colloid Sci. 186 (2), 453461.CrossRefGoogle ScholarPubMed
McHale, G. & Newton, M. 2002 Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids Surf. A: Physicochem. Engng Aspects 206 (1–3), 7986.CrossRefGoogle Scholar
McHale, G., Newton, M.I. & Carroll, B.J. 2001 The shape and stability of small liquid drops on fibers. Oil Gas Sci. Technol. 56 (1), 4754.CrossRefGoogle Scholar
Myshkis, A.D., Babskii, V.G., Kopachevskii, N.D., Slobozhanin, L.A. & Tyuptsov, A.D. 1987 Low-Gravity Fluid Mechanics. Springer.CrossRefGoogle Scholar
Pham, C.-T., Perrard, S. & Le, D.G. 2020 Surface waves along liquid cylinders. Part 1. Stabilising effect of gravity on the Plateau–Rayleigh instability. J. Fluid Mech. 891,A8.CrossRefGoogle Scholar
Poulain, S. & Carlson, A. 2023 Sliding, vibrating and swinging droplets on an oscillating fibre. J. Fluid Mech. 967, A24.CrossRefGoogle Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.CrossRefGoogle Scholar
Prosperetti, A. 2012 Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Phys. Fluids 24 (3), 032109.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31 (1), 347384.CrossRefGoogle Scholar
Rayleigh, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29 (196-199), 7197.Google Scholar
Russo, M.J. & Steen, P.H. 1986 Instability of rotund capillary bridges to general disturbances: experiment and theory. J. Colloid Interface Sci. 113 (1), 154163.CrossRefGoogle Scholar
Sauret, A., Bick, A.D., Duprat, C. & Stone, H.A. 2014 Wetting of crossed fibers: multiple steady states and symmetry breaking. Europhys. Lett. 105 (5), 56006.CrossRefGoogle Scholar
Sauret, A., Boulogne, F., Soh, B., Dressaire, E. & Stone, H.A. 2015 Wetting morphologies on randomly oriented fibers. Eur. Phys. J. E 38 (6), 19.CrossRefGoogle ScholarPubMed
Schwarzwaelder, A., Freese, F., Meyer, J., Loganathan, K., Tietze, H., Dittler, A. & Janoske, U. 2024 Experimental and numerical investigation of droplet–fiber interaction on mechanically excited fiber. Phys. Fluids 36 (3), 032006.CrossRefGoogle Scholar
Sharma, S. & Wilson, D.I. 2021 On a toroidal method to solve the sessile-drop oscillation problem. J. Fluid Mech. 919, A39.CrossRefGoogle Scholar
Shiryaev, A. 2020 Oscillations of an inviscid encapsulated drop. Fluid Dyn. Mater. Process. 16 (4), 761771.CrossRefGoogle Scholar
Steen, P.H., Chang, C.-T. & Bostwick, J.B. 2019 Droplet motions fill a periodic table. Proc. Natl. Acad. Sci. 116 (11), 48494854.CrossRefGoogle ScholarPubMed
Strani, M. & Sabetta, F. 1984 Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233247.CrossRefGoogle Scholar
Sumanasekara, U.R. & Bhattacharya, S. 2017 Detailed finer features in spectra of interfacial waves for characterization of a bubble-laden drop. J. Fluid Mech. 831, 698718.CrossRefGoogle Scholar
Sun, K., Shu, L., Jia, F., Li, Z. & Wang, T. 2022 Vibration-induced detachment of droplets on superhydrophobic surfaces. Phys. Fluids. 34 (5), 053319.CrossRefGoogle Scholar
Sun, Y., Bazilevsky, A.V. & Kornev, K.G. 2023 Classification of axisymmetric shapes of droplets on fibers. could non-wettable fibers support axisymmetric droplets? Phys. Fluids 35 (7), 072004.Google Scholar
Wang, B. & Tao, J. 2022 Unified inviscid dispersion relation and ohnesorge number effect on the rivulet instability. Phys. Fluids 34 (12), 124105.CrossRefGoogle Scholar
Zhang, F. & Zhou, X. 2023 Static and dynamic stability of pendant drops. J. Fluid Mech. 968, A30.CrossRefGoogle Scholar
Zhang, F., Zhou, X. & Ding, H. 2023 Effects of gravity on natural oscillations of sessile drops. J. Fluid Mech. 962, A10.CrossRefGoogle Scholar
Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.-Q., Zhao, Y., Zhai, J. & Jiang, L. 2010 Directional water collection on wetted spider silk. Nature 463 (7281), 640643.CrossRefGoogle ScholarPubMed