No CrossRef data available.
Published online by Cambridge University Press: 14 May 2025
We explore the instability and oscillation dynamics of barrel-shaped droplets on cylindrical fibres, contributing to a deeper understanding of fibre–droplet interactions critical to both natural systems and industrial applications. Unlike sessile droplets on flat surfaces, droplets on fibres exhibit unique behaviours due to the curvature of the fibre, such as transitions from axisymmetric (barrel) to non-axisymmetric (clamshell) shapes governed by droplet volume, contact angle and fibre radius. Using a linear inviscid theory, we compute the frequency spectrum of barrel-shaped droplets and identify stability thresholds for the barrel-to-clamshell transition by examining the first rocking mode, with a focus on the role of contact line conditions. This analysis resolves experimental anomalies concerning the stability of half-barrel-shaped droplets on hydrophobic fibres. Our findings also reveals diverse frequency spectra: droplets on thin fibres exhibit Rayleigh–Lamb-like spectral features, while those on thicker fibres show reduced sensitivity to azimuthal wavenumber. Interestingly, the instability of sectoral modes on thick fibres resembles the Rayleigh–Plateau instability of static rivulets, with fibre curvature slightly reducing growth rates at small axial wavenumbers but increasing them at larger ones.