Skip to main content

Dynamics of m = 0 and m = 1 modes and of streamwise vortices in a turbulent axisymmetric mixing layer

  • S. Davoust (a1), L. Jacquin (a1) and B. Leclaire (a1)

The near field of a Reynolds number and low-Mach-number cylindrical jet has been investigated by means of a high-speed stereo PIV setup that provides the spatio-temporal velocity field in a transverse plane, two diameters downstream of the jet exit. Proper orthogonal decomposition (POD) and spatio-temporal correlations are used to identify some of the main dynamical features of this flow. We show that the flow is dominated by streamwise vortices whose production and spatial organization can be related to and perturbations, and to the mean shear of the mixing layer. A dynamical scenario is proposed which describes this interaction, in accordance with our observations.

Corresponding author
Email address for correspondence:
Hide All
1. Bernal, L. P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499525.
2. Bradshaw, P. 1966 The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26 (2), 225236.
3. Brancher, P., Chomaz, J. M. & Huerre, P. 1994 Direct numerical simulations of round jets: vortex induction and side jets. Phys. Fluids 6 (5), 17681774.
4. Bruun, H. H. 1995 Hot-Wire Anemometry: Principles and Signal Analysis. Oxford University Press.
5. Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S. & Le Sant, Y. 2011 Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50, 11691182.
6. Citriniti, J. H. & George, W. K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137166.
7. Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.
8. Davoust, S. 2011 Dynamics of large-scale structures in turbulent jets with or without the effect of swirl. PhD thesis, ONERA, Ecole Polytechnique.
9. Davoust, S. & Jacquin, L. 2011 Taylor’s hypothesis convection velocities from mass conservation equation. Phys. Fluids 23 (5), 051701.
10. Del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
11. Delville, J., Ukeiley, L., Cordier, L., Bonnet, J. P. & Glauser, M. 1999 Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 391, 91122.
12. Gamard, S., Jung, D. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205230.
13. Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2008 Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141175.
14. George, W. K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. Adv. Turbul. 3974.
15. Glauser, M. N. & George, W. K. 1987 Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence. Adv. Turbul. 357366.
16. Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365422.
17. Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981 The preferred mode of the axisymmetric jet. J. Fluid Mech. 110, 3971.
18. Hussain, A. & Zedan, M. F. 1978 Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness. Phys. Fluids 21, 1100.
19. Iqbal, M. O. & Thomas, F. O. 2007 Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J. Fluid Mech. 571, 281326.
20. Jacquin, L., Leuchter, O., Cambon, C. & Mathieu, J. 1990 Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 152.
21. Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
22. Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.
23. Jung, D., Gamard, S. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173204.
24. Kim, J. 1983 On the structure of wall-bounded turbulent flows. Phys. Fluids 26, 2088.
25. Kim, J. & Choi, H. 2009 Large eddy simulation of a circular jet: effect of inflow conditions on the near field. J. Fluid Mech. 620, 383411.
26. Leclaire, B. & Jacquin, L. 2012 On the generation of swirling jets: high Reynolds number rotating flow in a pipe with final contraction. J. Fluid Mech. 692, 78111.
27. Leclaire, B., Jaubert, B., Champagnat, F., Le Besnerais, G. & Le Sant, Y. 2009 FOLKI-3C: a simple, fast and direct algorithm for stereo PIV. In Proceedings of 8th International Symposium on Particle Image Velocimetry – PIV09. Melbourne.
28. Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.
29. Lin, S. J. & Corcos, G. M. 1984 The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech. 141, 139178.
30. Martin, J. E. & Meiburg, E. 1991 Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J. Fluid Mech. 230, 271318.
31. Matsuda, T. & Sakakibara, J. 2005 On the vortical structure in a round jet. Phys. Fluids 17, 025106.
32. McIlwain, S. & Pollard, A. 2002 Large eddy simulation of the effects of mild swirl on the near field of a round free jet. Phys. Fluids 14, 653.
33. Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon, S. & Riley, J. J. 1987 Secondary instability of a temporally growing mixing layer. J. Fluid Mech. 184, 207243.
34. Michalke, A. 1984 Survey on jet instability theory. Prog. Aeronaut. Sci. 21 (3), 159199.
35. Neu, J. C. 1984 The dynamics of stretched vortices. J. Fluid Mech. 143, 253276.
36. Nickels, T. B. & Marusic, I. 2001 On the different contributions of coherent structures to the spectra of a turbulent round jet and a turbulent boundary layer. J. Fluid Mech. 448, 367385.
37. Paschereit, C. O., Oster, D., Long, T., Fiedler, H. E. & Wygnanski, I. 1992 Flow visualization of interactions among large coherent structures in an axisymmetric jet. Exp. Fluids 12 (3), 189199.
38. Raffel, M., Willert, C., Wereley, C. & Kompenhans, J. 2007 Particle Image Velocimetry. A Practical Guide, 2nd edn. Springer.
39. Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 3366.
40. Suprayan, R. & Fiedler, H. E. 1994 On streamwise vortical structures in the near-field of axisymmetric shear layers. Meccanica 29 (4), 403410.
41. Thomas, F. O. 1991 Structure of mixing layers and jets. Appl. Mech. Rev. 44, 119.
42. Tinney, C. E. 2009 Proper grid resolutions for the proper basis. AIAA 47th Aerospace Sciences Meeting and Exhibit, Orlando, Florida, USA, AIAA paper 2009–0068.
43. Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2008a Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 612, 107141.
44. Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2008b Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction. J. Fluid Mech. 615, 53.
45. Tropea, C., Yarin, A. L. & Foss, J. F. 2007 Springer Handbook of Experimental Fluid Mechanics. Springer.
46. Yule, A. J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89 (3), 413432.
47. Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Taylor hypothesis and large-scale coherent structures. J. Fluid Mech. 112, 379396.
48. Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1984 Natural large-scale structures in the axisymmetric mixing layer. J. Fluid Mech. 138, 325351.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed