Alpert, B., Greengard, L. & Hagstrom, T.
2000
Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal.
37, 1138–1164.
Arnold, V. I.
1989
Mathematical Methods of Classical Mechanics. Springer.
Baker, G., Caflisch, R. E. & Siegel, M.
1993
Singularity formation during Rayleigh–Taylor instability. J. Fluid Mech.
252, 51–78.
Baker, G. R., Meiron, D. I. & Orszag, S. A.
1982
Generalized vortex methods for free-surface flow problems. J. Fluid Mech.
123, 477–501.
Baker, G. R. & Shelley, M. J.
1990
On the connection between thin vortex layers and vortex sheets. J. Fluid Mech.
215, 161–194.
Baker, G. R. & Xie, C.
2011
Singularities in the complex physical plane for deep water waves. J. Fluid Mech.
685, 83–116.
Boyd, J. P.
2001
Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Publications.
Caflisch, R. & Orellana, O.
1989
Singular solutions and ill–posedness for the evolution of vortex sheets. SIAM J. Math. Anal.
20 (2), 293–307.
Caflisch, R., Orellana, O. & Siegel, M.
1990
A localized approximation method for vortical flows. SIAM J. Appl. Maths
50 (6), 1517–1532.
Caflisch, R. E., Ercolani, N., Hou, T. Y. & Landis, Y.
1993
Multi-valued solutions and branch point singularities for nonlinear hyperbolic or elliptic systems. Commun. Pure Appl. Maths
46 (4), 453–499.
Chalikov, D. & Sheinin, D.
1998
Direct modeling of one-dimensional nonlinear potential waves. Adv. Fluid Mech.
17, 207–258.
Chalikov, D. & Sheinin, D.
2005
Modeling of extreme waves based on equation of potential flow with a free surface. J. Comput. Phys.
210, 247–273.
Chalikov, D. V.
2016
Numerical Modeling of Sea Waves. Springer.
Cowley, S. J., Baker, G. R. & Tanveer, S.
1999
On the formation of Moore curvature singularities in vortex sheets. J. Fluid Mech.
378, 233–267.
Crowdy, D. G.
2002
On a class of geometry-driven free boundary problems. SIAM. J. Appl. Maths
62, 945–954.
Dubrovin, B. A., Fomenko, A. T. & Novikov, S. P.
1985
Modern Geometry: Methods and Applications: Part II: The Geometry and Topology of Manifolds. Springer.
Dyachenko, A. I.
2001
On the dynamics of an ideal fluid with a free surface. Dokl. Math.
63 (1), 115–117.
Dyachenko, A. I., Kachulin, D. I. & Zakharov, V. E.
2013a
On the nonintegrability of the free surface hydrodynamics. JETP Lett.
98, 43–47.
Dyachenko, A. I., Kuznetsov, E. A., Spector, M. & Zakharov, V. E.
1996
Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A
221, 73–79.
Dyachenko, A. I., Lushnikov, P. M. & Zakharov, V. E.
2019
Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface. J. Fluid Mech.
869, 526–552.
Dyachenko, A. I. & Zakharov, V. E.
1994
Is free surface hydrodynamics an integrable system?
Phys. Lett. A
190 (2), 144–148.
Dyachenko, S. & Newell, A. C.
2016
Whitecapping. Stud. Appl. Maths
137, 199–213.
Dyachenko, S. A., Lushnikov, P. M. & Korotkevich, A. O.
2013b
The complex singularity of a Stokes wave. JETP Lett.
98 (11), 675–679.
Dyachenko, S. A., Lushnikov, P. M. & Korotkevich, A. O.
2016
Branch cuts of Stokes wave on deep water. Part I. Numerical solution and Padé approximation. Stud. Appl. Maths
137, 419–472.
Baker, G. A. Jr & Graves-Morris, P. R.
1996
Padé Approximants, 2nd edn. Cambridge University Press.
Gardner, C. S., Greene, J. M., Kruskal, M. D. & Miura, R. M.
1967
Method for solving the Korteweg-deVries equation. Phys. Rev. Lett.
19, 1095–1097.
Gonnet, P., Pachon, R. & Trefethen, L. N.
2011
Robust rational interpolation and least-squares. Elec. Trans. Numer. Anal.
1388, 146–167.
Grant, M. A.
1973
The singularity at the crest of a finite amplitude progressive Stokes wave. J. Fluid Mech.
59 (2), 257–262.
Karabut, E. A. & Zhuravleva, E. N.
2014
Unsteady flows with a zero acceleration on the free boundary. J. Fluid Mech.
754, 308–331.
Krasny, R.
1986
A study of singularity formation in a vortex sheet by the point–vortex approximation. J. Fluid Mech.
167, 65–93.
Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E.
1993
Surface singularities of ideal fluid. Phys. Lett. A
182 (4–6), 387–393.
Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E.
1994
Formation of singularities on the free surface of an ideal fluid. Phys. Rev. E
49, 1283–1290.
Lamb, H.
1945
Hydrodynamics. Dover Books on Physics.
Landau, L. D. & Lifshitz, E. M.
1989
Fluid Mechanics, 3rd edn. vol. 6. Pergamon.
Lushnikov, P. M. & Zubarev, N. M.
2018
Exact solutions for nonlinear development of a Kelvin–Helmholtz instability for the counterflow of superfluid and normal components of Helium II. Phys. Rev. Lett.
120, 204504.
Lushnikov, P. M.
2004
Exactly integrable dynamics of interface between ideal fluid and light viscous fluid. Phys. Lett. A
329, 49–54.
Lushnikov, P. M.
2016
Structure and location of branch point singularities for Stokes waves on deep water. J. Fluid Mech.
800, 557–594.
Lushnikov, P. M., Dyachenko, S. A. & Silantyev, D. A.
2017
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave. Proc. R. Soc. Lond. A
473, 20170198.
Meiron, D. I., Baker, G. R. & Orszag, S. A.
1982
Analytic structure of vortex sheet dynamics. Part 1. Kelvin–Helmholtz instability. J. Fluid Mech.
114, 283–298.
Meison, D., Orzag, S. & Izraely, M.
1981
Applications of numerical conformal mapping. J. Comput. Phys.
40, 345–360.
Mineev-Weinstein, M., Wiegmann, P. B. & Zabrodin, A.
2000
Integrable structure of interface dynamics. Phys. Rev. Lett.
84 (22), 5106–5109.
Moore, D. W.
1979
The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. R. Soc. Lond. A
365 (1720), 105–119.
Novikov, S., Manakov, S. V., Pitaevskii, L. P. & Zakharov, V. E.
1984
Theory of Solitons: The Inverse Scattering Method. Springer.
Ovsyannikov, L. V.
1973
Dynamics of a fluid. M.A. Lavrent’ev Institute of Hydrodynamics Sib. Branch USSR Ac. Sci.
15, 104–125.
Richardson, S.
1972
Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J. Fluid Mech.
56, 609–618.
Shelley, M. J.
1992
A study of singularity formation in vortex–sheet motion by a spectrally accurate vortex method. J. Fluid Mech.
244, 493–526.
Stokes, G. G.
1847
On the theory of oscillatory waves. Trans. Camb. Phil. Soc.
8, 441–455.
Stokes, G. G.
1880
On the theory of oscillatory waves. Math. Phys. Papers
1, 197–229.
Tanveer, S.
1991
Singularities in water waves and Rayleigh–Taylor instability. Proc. R. Soc. Lond. A
435, 137–158.
Tanveer, S.
1993
Singularities in the classical Rayleigh–Taylor flow: formation and subsequent motion. Proc. R. Soc. Lond. A
441, 501–525.
Weinstein, A.
1983
The local structure of Poisson manifolds. J. Differ. Geom.
18, 523–557.
Zakharov, V. E.
1968
Stability of periodic waves of finite amplitude on a surface. J. Appl. Mech. Tech. Phys.
9 (2), 190–194.
Zakharov, V. E. & Dyachenko, A. I.2012 Free-surface hydrodynamics in the conformal variables, authors’ unpublished observations, arXiv:1206.2046.
Zakharov, V. E., Dyachenko, A. I. & Vasiliev, O. A.
2002
New method for numerical simulation of nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. (B/Fluids)
21, 283–291.
Zakharov, V. E. & Faddeev, L. D.
1971
Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct. Anal. Applics
5, 280–287.
Zakharov, V. E. & Shabat, A. B.
1972
Exact theory of 2-dimensional sef-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP
34, 62.
Zubarev, N. M.
2000
Charged-surface instability development in liquid helium: an exact solution. JETP Lett.
71, 367–369.
Zubarev, N. M.
2002
Exact solutions of the equations of motion of liquid helium with a charged free surface. J. Expl Theor. Phys.
94, 534–544.
Zubarev, N. M.
2008
Formation of singularities on the charged surface of a liquid-helium layer with a finite depth. J. Expl Theor. Phys.
107, 668–678.
Zubarev, N. M. & Karabut, E. A.
2018
Exact local solutions for the formation of singularities on the free surface of an ideal fluid. JETP Lett.
107, 412–417.
Zubarev, N. M. & Kuznetsov, E. A.
2014
Singularity formation on a fluid interface during the Kelvin–Helmholtz instability development. J. Expl Theor. Phys.
119, 169–178.