Hostname: page-component-7dd5485656-wxk4p Total loading time: 0 Render date: 2025-10-29T06:35:27.427Z Has data issue: false hasContentIssue false

Dynamics of spatially developing turbulent/turbulent interfaces in the absence of mean shear

Published online by Cambridge University Press:  29 October 2025

Pedro Domingues Alves
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
Marco Zecchetto
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
Oliver Buxton
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Carlos Bettencourt da Silva*
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
*
Corresponding author: Carlos Bettencourt da Silva, carlos.silva@tecnico.ulisboa.pt

Abstract

Spatially evolving turbulent/turbulent interfaces (TTIs) in the absence of mean shear are studied using direct numerical simulation (DNS). To this end, a novel approach was developed, allowing for six different TTIs to be created with a Taylor-based Reynolds number in the range of $146 \lesssim {Re}_{\lambda }\lesssim 296$. The analysis of classical statistics of turbulence intensity, fluctuating vorticity and integral length scale clearly indicates that one of the two distinct turbulent regions bounding the interface tends to dominate the other one. The half-width thickness is found to be dependent on the turbulent properties of each layer, ultimately suggesting that the large-scale quantities dictate the spreading of each turbulent region. Small scale quantities, e.g. the enstrophy, exhibit an universal conditional mean profile when normalised by the local Kolmogorov (velocity and time) scales of motion. In contrast, the large-scale properties of the flow do not modify the enstrophy statistics. Additionally, when taking the difference of fluctuating vorticity levels on each layer ad extremum, profiles typical of turbulent/non-turbulent interfaces (TNTIs) are observed. The budget terms of enstrophy and rate-of-strain magnitude support these findings.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Attili, A., Cristancho, J.C. & Bisetti, F. 2014 Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer. J. Turbul. 15 (9), 555568.10.1080/14685248.2014.919394CrossRefGoogle Scholar
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.10.1017/S0022112001006759CrossRefGoogle Scholar
Buaria, D., Pumir, A. & Bodenschatz, E. 2020 Self-attenuation of extreme events in Navier–Stokes turbulence. Nat. Commun. 11 (1), 5852.10.1038/s41467-020-19530-1CrossRefGoogle ScholarPubMed
Buaria, D., Pumir, A., Bodenschatz, E. & Yeung, P.-K. 2019 Extreme velocity gradients in turbulent flows. New J. Phys. 21 (4), 043004.10.1088/1367-2630/ab0756CrossRefGoogle Scholar
Buxton, O.R.H. & Chen, J. 2023 The relative efficiencies of the entrainment of mass, momentum and kinetic energy from a turbulent background. J. Fluid Mech. 977, R2.10.1017/jfm.2023.958CrossRefGoogle Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 1987 Spectral Methods in Fluid Dynamics. Springer-Verlag.Google Scholar
Chauhan, K., Philip, J., De Silva, C.M., Hutchins, N. & Marusic, I. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.10.1017/jfm.2013.641CrossRefGoogle Scholar
Chen, J. & Buxton, O.R.H. 2023 Spatial evolution of the turbulent/turbulent interface geometry in a cylinder wake. J. Fluid Mech. 969, A4.10.1017/jfm.2023.547CrossRefGoogle Scholar
Chen, J. & Buxton, O.R.H. 2024 Turbulent/turbulent entrainment in a planar wake. J. Fluid Mech. 1000, A26.10.1017/jfm.2024.822CrossRefGoogle Scholar
Dopazo, C., Martín, J. & Hierro, J. 2007 Local geometry of isoscalar surfaces. Phys. Rev. E 76 (5), 056316.10.1103/PhysRevE.76.056316CrossRefGoogle ScholarPubMed
Elsinga, G.E., Ishihara, T., Goudar, M.V., Da Silva, C.B. & Hunt, J.C.R. 2017 The scaling of straining motions in homogeneous isotropic turbulence. J. Fluid Mech. 829, 3164.10.1017/jfm.2017.538CrossRefGoogle Scholar
Ferran, A., Obligado, M. & Aliseda, A. 2024 Inertial particles in a turbulent/turbulent interface. Intl J. Multiphase Flow 179, 104911.10.1016/j.ijmultiphaseflow.2024.104911CrossRefGoogle Scholar
Guimarães, M.C., Pimentel, N., Pinho, F.T. & da Silva, C.B. 2020 Direct numerical simulations of turbulent viscoelastic jets. J. Fluid Mech. 899, 1137.10.1017/jfm.2020.402CrossRefGoogle Scholar
Guimarães, M.C., Pinho, F.T. & da Silva, C.B. 2022 Turbulent planar wakes of viscoelastic fluids analysed by direct numerical simulations. J. Fluid Mech. 946, A26.10.1017/jfm.2022.559CrossRefGoogle Scholar
Holzner, M., Lüthi, B., Tsinober, A. & Kinzelbach, W. 2009 Acceleration, pressure and related quantities in the proximity of the turbulent/non-turbulent interface. J. Fluid Mech. 639, 153165.10.1017/S0022112009991522CrossRefGoogle Scholar
Huang, J., Burridge, H.C. & van Reeuwijk, M. 2023 Local entrainment across a TNTI and a TTI in a turbulent forced fountain. J. Fluid Mech. 977, A13.10.1017/jfm.2023.947CrossRefGoogle Scholar
Iovieno, M., Di Savino, S., Gallana, L. & Tordella, D. 2014 Mixing of a passive scalar across a thin shearless layer: concentration of intermittency on the sides of the turbulent interface. J. Turbul. 15 (5), 311334.10.1080/14685248.2014.905393CrossRefGoogle Scholar
Jayesh & Warhaft, Z. 1994 Turbulent penetration of a thermally stratified interfacial layer in a wind tunnel. J. Fluid Mech. 277, 2354.Google Scholar
Kankanwadi, K.S. & Buxton, O.R.H. 2020 Turbulent entrainment into a cylinder wake from a turbulent background. J. Fluid Mech. 905, A35.CrossRefGoogle Scholar
Kankanwadi, K.S. & Buxton, O.R.H. 2022 On the physical nature of the turbulent/turbulent interface. J. Fluid Mech. 942, A31.10.1017/jfm.2022.388CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.10.1016/0021-9991(85)90148-2CrossRefGoogle Scholar
Kohan, K.F. & Gaskin, S.J. 2022 On the scalar turbulent/turbulent interface of axisymmetric jets. J. Fluid Mech. 950, A32.10.1017/jfm.2022.825CrossRefGoogle Scholar
Kohan, K.F. & Gaskin, S.J. 2024 Scalar mixing and entrainment in an axisymmetric jet subjected to external turbulence. Phys. Fluids 36 (10), 105142.10.1063/5.0231395CrossRefGoogle Scholar
Krogstad, P.-Å. & Davidson, P.A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.10.1017/S0022112009991807CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.10.1016/0021-9991(92)90324-RCrossRefGoogle Scholar
Leonard, B.P. 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng 19 (1), 5998.10.1016/0045-7825(79)90034-3CrossRefGoogle Scholar
Nakamura, K., Matsushima, T., Zheng, Y., Nagata, K. & Watanabe, T. 2022 Large-and small-scale characteristics in a temporally developing shearless turbulent mixing layer. Phys. Fluids 34 (11), 115117.10.1063/5.0121047CrossRefGoogle Scholar
Nakamura, K., Watanabe, T. & Nagata, K. 2023 Turbulent/turbulent interfacial layers of a shearless turbulence mixing layer in temporally evolving grid turbulence. Phys. Fluids 35 (4), 045117.Google Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.10.1016/0021-9991(76)90023-1CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
van Reeuwijk, M., Vassilicos, J.C. & Craske, J. 2021 Unified description of turbulent entrainment. J. Fluid Mech. 908, A12.10.1017/jfm.2020.836CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. vol. 15. Springer.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.Google Scholar
da Silva, C.B. & Métais, O. 2002 On the influence of coherent structures upon interscale interactions in turbulent plane jets. J. Fluid Mech. 473, 103145.10.1017/S0022112002002458CrossRefGoogle Scholar
da Silva, C.B., Dos Reis, R.J.N. & Pereira, J.C.F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.10.1017/jfm.2011.296CrossRefGoogle Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 a Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.10.1146/annurev-fluid-010313-141357CrossRefGoogle Scholar
da Silva, C.B., Lopes, D.C. & Raman, V. 2015 The effect of subgrid-scale models on the entrainment of a passive scalar in a turbulent planar jet. J. Turbul. 16 (4), 342366.10.1080/14685248.2014.986329CrossRefGoogle Scholar
da Silva, C.B., Taveira, R.R. & Borrell, G. 2014 b Characteristics of the turbulent/nonturbulent interface in boundary layers, jets and shear-free turbulence. J. Phys.: Conf. Ser 506, 012015.Google Scholar
Silva, T.S., Zecchetto, M. & da Silva, C.B. 2018 The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech. 843, 156179.10.1017/jfm.2018.143CrossRefGoogle Scholar
Stanley, S. & Sarkar, S. 1997 Simulations of spatially developing two-dimensional shear layers and jets. Theor. Comput. Fluid Dyn. 9, 121147.10.1007/s001620050036CrossRefGoogle Scholar
Taveira, R.R. & da Silva, C.B. 2013 Kinetic energy budgets near the turbulent/nonturbulent interface in jets. Phys. Fluids 25 (1), 015114.10.1063/1.4776780CrossRefGoogle Scholar
Teixeira, M.A.C. & da Silva, C.B. 2012 Turbulence dynamics near a turbulent/non-turbulent interface. J. Fluid Mech. 695, 257287.10.1017/jfm.2012.17CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A first course in turbulence. MIT press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Tordella, D. & Iovieno, M. 2006 Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion. J. Fluid Mech. 549, 429441.10.1017/S0022112005007688CrossRefGoogle Scholar
Tordella, D. & Iovieno, M. 2012 Decaying turbulence: what happens when the correlation length varies spatially in two adjacent zones. Phys. D: Nonlinear Phenom. 241 (3), 178185.10.1016/j.physd.2011.09.001CrossRefGoogle Scholar
Tsinober, A. 2000 Vortex stretching versus production of strain/dissipation. In Turbulence Structure and Vortex Dynamics (ed. J.C.R. Hunt & J.C. Vassilicos), pp. 164191. Cambridge University Press Cambridge.Google Scholar
Vassilicos, J.C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47 (1), 95114.10.1146/annurev-fluid-010814-014637CrossRefGoogle Scholar
Veeravalli, S. & Warhaft, Z. 1989 The shearless turbulence mixing layer. J. Fluid Mech. 207, 191229.10.1017/S0022112089002557CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.10.1063/1.5022423CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.10.1103/PhysRevLett.95.174501CrossRefGoogle ScholarPubMed
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.CrossRefGoogle Scholar
Williamson, J.H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35, 4856.10.1016/0021-9991(80)90033-9CrossRefGoogle Scholar
Zecchetto, M. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.10.1017/jfm.2021.168CrossRefGoogle Scholar